Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team determines how estrogens persist in dairy farm wastewater

Wastewater from large dairy farms contains significant concentrations of estrogenic hormones that can persist for months or even years, researchers report in a new study. In the absence of oxygen, the estrogens rapidly convert from one form to another; this stalls their biodegradation and complicates efforts to detect them, the researchers found.

The study, led by scientists at the Illinois Sustainable Technology Center, is the first to document the unusual behavior of estrogens in wastewater lagoons. The study appears in the journal Environmental Science & Technology.

Just as new mothers undergo hormonal changes that enable them to breastfeed, lactating cows generate estrogenic hormones that are excreted in urine and feces, said ISTC senior research scientist Wei Zheng, who led the study. In large “confined animal feeding operations” (CAFOs) the hormones end up in wastewater. Farmers often store the wastewater in lagoons and may use it to fertilize crops.

Federal laws regulate the flow of nutrients such as nitrogen and phosphorous from CAFOs to prevent excess nutrients from polluting rivers, streams, lakes or groundwater. Environmental officials assume that such regulations also protect groundwater and surface waters from contamination with animal hormones and veterinary pharmaceuticals, but this has not been proven.

Hormone concentrations in livestock wastes are 100 to 1,000 times higher than those emitted from plants that treat human sewage, and large dairy farms are a primary source of estrogens in the environment, Zheng said. Recent studies have detected estrogenic hormones in soil and surrounding watersheds after dairy wastewater was sprayed on the land as fertilizer.

“These estrogens are present at levels that can affect the (reproductive functions of) aquatic animals,” Zheng said. Even low levels of estrogens can “feminize” animals that spend their lives in the water, causing male fish, for example, to have low sperm counts or to develop female characteristics (such as producing eggs), undermining their ability to reproduce.

Hormones that end up in surface or groundwater could contaminate sources of drinking water for humans, Zheng said. “The estrogens may also be taken up by plants – a potential new route into the food chain,” he said.

When exposed to the air, estrogenic hormones in animal waste tend to break down into harmless byproducts. But the hormones persist in anoxic conditions.

While conducting the new study on dairy waste lagoon water in the lab, the researchers were surprised at first to see levels of three primary estrogens (17 alpha-estradiol, 17 beta-estradiol and estrone) fall and then rise again in their samples. Further analysis revealed that the estradiols were being converted to estrone, undergoing the normal first step of biodegradation. But then the process reversed itself: Estrone was reverting to the alpha- and beta-estradiols.

“We call this a reverse transformation,” Zheng said. “It inhibits further degradation. Now we have a better idea of why (the estrogens) can persist in the environment.”

The degradation rates of the three hormones in the wastewater solution were temperature-dependent, and very slow. After 52 days at 35 degrees Celsius (95 degrees Fahrenheit) – an ideal temperature for hormone degradation, Zheng said – less than 30 percent of the hormones in the solution had broken down.

The fluctuating levels of estrone and estradiols may lead to detection errors, Zheng said, giving the impression that the total estrogen load of wastewater is decreasing when it is not.

“We need to develop a strategy to prevent these hormones from building up in the environment,” he said.

Researchers from the Agricultural Research Service of the U.S. Department of Agriculture also contributed to this study. The USDA supported this research.

The Illinois Sustainable Technology Center is a division of the Prairie Research Institute at the U. of I.

Editor’s notes: To reach Wei Zheng, call:217-333-7276;
The paper, “Anaerobic Transformation Kinetics and Mechanism of Steroid Estrogenic Hormones in Dairy Lagoon Water,” is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>