Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study reveals coral reefs may support much more biodiversity than previously thought

03.11.2011
Smithsonian scientists and colleagues conducted the first DNA barcoding survey of crustaceans living on samples of dead coral taken from the Indian, Pacific and Caribbean oceans. The results suggest that the diversity of organisms living on the world's coral reefs is seriously underestimated. The team's research "The Diversity of Coral Reefs: What Are We Missing?" was published in October in the journal PLoS ONE.

At depths of 26 to 39 feet, the scientists collected dead coral from five different locations. At two sites where removing coral is prohibited, the scientists collected man-made sampling devices that had been left in the water for one year. Combined, the coral and devices had a surface area of just 6.3 square meters (20.6 square feet), yet 525 different species of crustaceans were found living on them.

"So much diversity in such a small, limited sample area shows that the diversity of crustaceans in the world's coral reefs -- and by implication the diversity of reefs overall -- is seriously under-detected and underestimated," said Nancy Knowlton, the Sant Chair for Ocean Science at the Smithsonian's National Museum of Natural History and co-author of the survey. "We found almost as many crabs in 6.3-square meters of coral as can be found in all of the seas of Europe. Compared to the results of much longer and labor-intensive surveys, we found a surprisingly large percentage of species with a fraction of the effort."

The world's coral reefs are some of the most endangered habitats on Earth. Given coral's rapid decline and global range, DNA barcoding offered the scientists a quick and efficient method for their survey. "DNA barcoding provides a standardized, cost-effective method of coming to grips with the staggering diversity of the world's oceans," Knowlton said. "It has enormous potential for use in broad global surveys, allowing us to find out what is living in the ocean now, and to keep track of it in the future."

Crustaceans collected for the survey were only those the scientists could see, and ranged from 0.2 to 1.9 inches long. All animals from which DNA was sequenced were preserved so they could be examined later by taxonomists.

"We collected dead corals because live corals defend themselves from being inhabited by other invertebrates," said Laetitia Plaisance of the Smithsonian's National Museum of Natural History and the Scripps Institution of Oceanography, and lead author of the survey.

Once a coral dies its structure becomes covered with algae, sponges, crustaceans, worms, mollusks and other creatures.

"Given the complexity and extent of the world's coral reefs, the survey covered only a very limited depth and habitat range," said Plaisance. "And yet we have so many more species than we ever expected."

Present estimates of species diversity in reefs are 600,000 to more than 9 million species worldwide. "We cannot give a new estimate today, but we may be able to in a few years," Plaisance said. Using man-made sampling structures at some 50 sites around the world, Plaisance is now working with the Smithsonian and the National Oceanographic and Atmospheric Administration on another survey that will include all of the many organisms that live on coral reefs.

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>