Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Snail Venoms Reflect Reduced Competition

A study of venomous snails on remote Pacific islands reveals genetic underpinnings of an ecological phenomenon that has fascinated scientists since Darwin.

The research, by University of Michigan evolutionary biologists Tom Duda and Taehwan Lee, is scheduled to be published online May 20 in the open-access journal PLoS ONE.

In the study, Duda and Lee explored ecological release, a phenomenon thought to be responsible for some of the most dramatic diversifications of living things in Earth's history. Ecological release occurs when a population is freed from the burden of competition, either because its competitors become extinct or because it colonizes a new area where few or no competitors are found. When this happens, the "released" population typically expands its diet or habitat, taking over resources that would be off-limits if competitors were present. This expansion is believed to drive the evolution of adaptations for taking advantage of the new resources, such as venoms tailored to a broader array of prey.

"Although there are plenty of examples of populations expanding into a variety of niches after experiencing ecological release, little is known about the evolution of genes associated with this phenomenon," said Duda, an assistant professor in the U-M Department of Ecology and Evolutionary Biology.

To investigate the process, Duda and Lee took advantage of a natural experiment involving a species of cone snails (Conus miliaris), which is found in shallow waters of tropical to subtropical environments from the Red Sea and eastern shores of Africa in the western Indian Ocean to Easter Island and Sala y Gómez in the southeastern Pacific. In most areas where the species is found, C. miliaris has lots of competitors and preys on only three species of marine worms. But on Easter Island, where it has virtually no competition, the snail's diet is much broader, incorporating many additional species of worms.

Cone snails paralyze their prey with venom made up of various "conotoxins." Because different species---or in some cases even different populations---of cone snails have both distinct prey preferences and distinctly different venom compositions, Duda has speculated that natural selection has shaped particular species' venoms to most effectively paralyze their favored prey.

To test this hypothesis, Duda and Lee looked at two conotoxin genes and compared patterns of variation found in the Easter Island snails with those of snails from Guam and American Samoa, where the snails have not experienced ecological release.

"On Easter Island, where the snails are eating far more things than they're eating elsewhere, we see that different toxins predominate, suggesting that natural selection has operated at these toxin genes," said Duda, who also is a research associate with the Smithsonian Tropical Research Institute. "These results imply that ecological release is associated with strong selection pressures that are associated with the evolution of new ecologies."

The research was funded by the National Geographic Society's Committee for Research and Exploration and the National Science Foundation.

For more information:

Thomas Duda:

Smithsonian Tropical Research Institute:


Link to paper:

Nancy Ross-Flanigan | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>