Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating the impact of ocean acidification on stony corals

30.11.2012
Ocean acidification and its consequences for marine life pose several pressing problems that are of concern to scientists all over the world. Scientists from the ZMT have developed a mathematical model with which they can simulate different scenarios of ocean acidification and the expected impacts on stony corals.
Ocean acidification and its consequences for marine life pose several pressing problems that are of concern to scientists all over the world. One alarming scenario is that stony corals may lose the ability to produce calcium carbonate skeletons and may no longer be able to form reefs with their structures that offer protection and habitats for an extraordinary variety of species. But how likely is such a development?

In order to make informed predictions, scientists must first understand the processes of skeletal development in single organisms and how these processes are impacted by perturbation factors. Researchers of the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen have developed a mathematical model that simulates in detail the calcification of coral polyps on the organism level. “With such a model, various scenarios of ocean acidification can be simulated and their effects on stony corals examined,” says the ecologist Sönke Hohn.

Atmospheric CO2 dissolves in seawater and forms carbonic acid. Rising carbon dioxide concentrations ultimately cause seawater to acidify. While today the surface water of the oceans has a pH of about 8.2, it is expected that this value will decrease to 7.8 by the year 2100. An acidic environment dissolves calcium carbonate. It has been known for some time that increasing CO2 levels reduce the ability of many marine organisms to produce their calcium carbonate skeletons. A study published in Science not long ago showed images of "naked" coral polyps that were exposed to pH values of 7.4 and received global attention. However, thus far it has remained unclear how the calcification process works under perturbed conditions. Scientists in Bremen have elucidated this process in more detail.

At the underside of their skin, polyps secrete calcium carbonate thus creating skeletal structures. All polyps of a coral colony are connected with each other via a layer of tissue. This separates the surrounding seawater from the fluid in which the calcareous skeleton is formed. Using a mathematical model, the scientists from the ZMT were able to prove that CO2 penetrates through the layers of tissue into the calcifying fluid. This suggests that despite the fact that corals actively regulate ion transport mechanisms, an increase in CO2 levels makes them unable to fight against CO2 diffusion.

The model describes the complex biochemical processes of ion exchanges and calcification in four compartments: the surrounding seawater, the polyp tissue, the stomach, and the calcifying fluid beneath the polyp. The model was based on data from various studies. But in particular a series of experiments carried out at the ZMT in the past were used, in which pH and calcium ion concentrations were measured below the polyp tissue using microprobes.

“Not even sophisticated laboratory experiments are sufficient to completely understand the process of calcification" says Agostino Merico, who helped to develop the modelling approach. “By simulating all relevant physiological processes, our model elucidates the complex processes and quantifies the effects of ocean acidification at the organism level." Thus, calculations with increased CO2 levels in the atmosphere, as they are expected in a worst-case scenario in 2100, would result in a 10% reduction of the calcification rates in stony corals. In a next step, the combined impact of ocean warming and acidification will be studied using the model.

Publication:
Hohn, S., Merico, A. (2012) Modelling coral polyp calcification in relation to ocean acidification, Biogeosciences, 9, 4441-4454. doi: 10.5194/bg-9-4441-2012.

More information:

Dr. Sönke Hohn
Leibniz-Zentrum für Marine Tropenökologie
Tel: 0421 - 23800 105
Mail: soenke.hohnzmt-bremen.de

Dr. Susanne Eickhoff | idw
Further information:
http://www.zmt-bremen.de

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>