Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating the impact of ocean acidification on stony corals

30.11.2012
Ocean acidification and its consequences for marine life pose several pressing problems that are of concern to scientists all over the world. Scientists from the ZMT have developed a mathematical model with which they can simulate different scenarios of ocean acidification and the expected impacts on stony corals.
Ocean acidification and its consequences for marine life pose several pressing problems that are of concern to scientists all over the world. One alarming scenario is that stony corals may lose the ability to produce calcium carbonate skeletons and may no longer be able to form reefs with their structures that offer protection and habitats for an extraordinary variety of species. But how likely is such a development?

In order to make informed predictions, scientists must first understand the processes of skeletal development in single organisms and how these processes are impacted by perturbation factors. Researchers of the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen have developed a mathematical model that simulates in detail the calcification of coral polyps on the organism level. “With such a model, various scenarios of ocean acidification can be simulated and their effects on stony corals examined,” says the ecologist Sönke Hohn.

Atmospheric CO2 dissolves in seawater and forms carbonic acid. Rising carbon dioxide concentrations ultimately cause seawater to acidify. While today the surface water of the oceans has a pH of about 8.2, it is expected that this value will decrease to 7.8 by the year 2100. An acidic environment dissolves calcium carbonate. It has been known for some time that increasing CO2 levels reduce the ability of many marine organisms to produce their calcium carbonate skeletons. A study published in Science not long ago showed images of "naked" coral polyps that were exposed to pH values of 7.4 and received global attention. However, thus far it has remained unclear how the calcification process works under perturbed conditions. Scientists in Bremen have elucidated this process in more detail.

At the underside of their skin, polyps secrete calcium carbonate thus creating skeletal structures. All polyps of a coral colony are connected with each other via a layer of tissue. This separates the surrounding seawater from the fluid in which the calcareous skeleton is formed. Using a mathematical model, the scientists from the ZMT were able to prove that CO2 penetrates through the layers of tissue into the calcifying fluid. This suggests that despite the fact that corals actively regulate ion transport mechanisms, an increase in CO2 levels makes them unable to fight against CO2 diffusion.

The model describes the complex biochemical processes of ion exchanges and calcification in four compartments: the surrounding seawater, the polyp tissue, the stomach, and the calcifying fluid beneath the polyp. The model was based on data from various studies. But in particular a series of experiments carried out at the ZMT in the past were used, in which pH and calcium ion concentrations were measured below the polyp tissue using microprobes.

“Not even sophisticated laboratory experiments are sufficient to completely understand the process of calcification" says Agostino Merico, who helped to develop the modelling approach. “By simulating all relevant physiological processes, our model elucidates the complex processes and quantifies the effects of ocean acidification at the organism level." Thus, calculations with increased CO2 levels in the atmosphere, as they are expected in a worst-case scenario in 2100, would result in a 10% reduction of the calcification rates in stony corals. In a next step, the combined impact of ocean warming and acidification will be studied using the model.

Publication:
Hohn, S., Merico, A. (2012) Modelling coral polyp calcification in relation to ocean acidification, Biogeosciences, 9, 4441-4454. doi: 10.5194/bg-9-4441-2012.

More information:

Dr. Sönke Hohn
Leibniz-Zentrum für Marine Tropenökologie
Tel: 0421 - 23800 105
Mail: soenke.hohnzmt-bremen.de

Dr. Susanne Eickhoff | idw
Further information:
http://www.zmt-bremen.de

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>