Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Tags, Fishing Data Reveal Turtle Danger Zones

04.02.2014
One of the biggest threats to critically endangered leatherback turtles is bycatch from industrial fishing in the open oceans.

Now, a team of researchers has satellite-tracked 135 leatherbacks with transmitters to determine the turtles’ patterns of movement in the Pacific Ocean. Combined with fisheries data, the researchers entered the information into a computer model to predict bycatch hotspots in the Pacific.

With this information, researchers and authorities hope to work with fisheries managers to avoid fishing when and where there is higher risk of also catching turtles in the area.

Though the ocean is vast and the turtles’ movements are dynamic and unpredictable, the small chance of an individual leatherback getting hooked or caught in fishing lines is multiplied by 760 million in the Pacific Ocean alone, said Stephen Morreale, referring to the number of longline hooks set annually in the Pacific.

Morreale is a Cornell University senior research associate and adjunct associate professor in the Department of Natural Resources. He is a co-author of the study published online Jan. 7 in the Proceedings of Royal Society B.

“It’s a waste,” Morreale said. “This is not a case of people merely trying to feed their families. The fishing industry does not want to catch leatherbacks, and the turtles that are caught are just discarded.”

In the Pacific, the researchers identified two genetically distinct populations, one western Pacific population that nests in Indonesia and feeds off the California coast, and another eastern Pacific population that nests in Costa Rica and Mexico and migrates along a corridor past the Galapagos Islands to a broad pelagic zone known as the South Pacific Gyre.

The maps reveal seasonal and geographic areas of greatest risk. For the western Pacific nesting populations, areas of highest risk included water around the Indonesian Islands near primary nesting beaches, and for the eastern Pacific populations, areas of greatest risk were in the South Pacific Gyre.

Leatherbacks are the largest sea turtles and the most massive reptile, reaching maximum weights of close to 2,000 pounds. The leathery-shelled turtles, which feed on jellyfish, use their flippers like wings to swim vast distances at surprising speeds; they also dive to depths of 1,200 meters, shuttling to and from the surface to breathe.

Once they hatch, males spend their entire lifetimes in the water. They take up to 20 years to reach maturity. As adults, females return throughout their lifetimes to the same nesting beach to lay clutches of 80 to 100 eggs in the sand, which they may repeat every two weeks over the course of a nesting season. Once they have laid all their eggs, they may not return for three to five years.

Because of the many risks over decades that leatherbacks face before they reach maturity, “an adult’s [ecological] value is huge,” said Morreale. Also, since so little has been known about their movements once they enter the ocean, conservationists have historically focused on protecting beach areas where they can be monitored and protected.

But “their protection at sea is extremely important,” and only recently, through satellite transmitters, are researchers beginning to understand the turtles’ complex habits in the ocean, which will hopefully lead to better protection, said Morreale.

Next steps for this research include acquiring more Pacificwide data for interactions between fisheries and turtles, as well as data for the Atlantic Ocean, Morreale added.

John Roe, an assistant professor at the University of North Carolina, Pembroke, was the paper’s lead author, along with Morreale and Frank Paladino at Indiana University-Purdue University at Fort Wayne, while Drexel University professor James Spotila assembled the research team.

Funding was provided mainly by the Lenfest Oceans Program.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Joe Schwartz | Newswise
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>