Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Tags, Fishing Data Reveal Turtle Danger Zones

04.02.2014
One of the biggest threats to critically endangered leatherback turtles is bycatch from industrial fishing in the open oceans.

Now, a team of researchers has satellite-tracked 135 leatherbacks with transmitters to determine the turtles’ patterns of movement in the Pacific Ocean. Combined with fisheries data, the researchers entered the information into a computer model to predict bycatch hotspots in the Pacific.

With this information, researchers and authorities hope to work with fisheries managers to avoid fishing when and where there is higher risk of also catching turtles in the area.

Though the ocean is vast and the turtles’ movements are dynamic and unpredictable, the small chance of an individual leatherback getting hooked or caught in fishing lines is multiplied by 760 million in the Pacific Ocean alone, said Stephen Morreale, referring to the number of longline hooks set annually in the Pacific.

Morreale is a Cornell University senior research associate and adjunct associate professor in the Department of Natural Resources. He is a co-author of the study published online Jan. 7 in the Proceedings of Royal Society B.

“It’s a waste,” Morreale said. “This is not a case of people merely trying to feed their families. The fishing industry does not want to catch leatherbacks, and the turtles that are caught are just discarded.”

In the Pacific, the researchers identified two genetically distinct populations, one western Pacific population that nests in Indonesia and feeds off the California coast, and another eastern Pacific population that nests in Costa Rica and Mexico and migrates along a corridor past the Galapagos Islands to a broad pelagic zone known as the South Pacific Gyre.

The maps reveal seasonal and geographic areas of greatest risk. For the western Pacific nesting populations, areas of highest risk included water around the Indonesian Islands near primary nesting beaches, and for the eastern Pacific populations, areas of greatest risk were in the South Pacific Gyre.

Leatherbacks are the largest sea turtles and the most massive reptile, reaching maximum weights of close to 2,000 pounds. The leathery-shelled turtles, which feed on jellyfish, use their flippers like wings to swim vast distances at surprising speeds; they also dive to depths of 1,200 meters, shuttling to and from the surface to breathe.

Once they hatch, males spend their entire lifetimes in the water. They take up to 20 years to reach maturity. As adults, females return throughout their lifetimes to the same nesting beach to lay clutches of 80 to 100 eggs in the sand, which they may repeat every two weeks over the course of a nesting season. Once they have laid all their eggs, they may not return for three to five years.

Because of the many risks over decades that leatherbacks face before they reach maturity, “an adult’s [ecological] value is huge,” said Morreale. Also, since so little has been known about their movements once they enter the ocean, conservationists have historically focused on protecting beach areas where they can be monitored and protected.

But “their protection at sea is extremely important,” and only recently, through satellite transmitters, are researchers beginning to understand the turtles’ complex habits in the ocean, which will hopefully lead to better protection, said Morreale.

Next steps for this research include acquiring more Pacificwide data for interactions between fisheries and turtles, as well as data for the Atlantic Ocean, Morreale added.

John Roe, an assistant professor at the University of North Carolina, Pembroke, was the paper’s lead author, along with Morreale and Frank Paladino at Indiana University-Purdue University at Fort Wayne, while Drexel University professor James Spotila assembled the research team.

Funding was provided mainly by the Lenfest Oceans Program.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Joe Schwartz | Newswise
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

nachricht Northern bald ibises fit for their journey to Tuscany
21.08.2015 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>