Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Tags, Fishing Data Reveal Turtle Danger Zones

04.02.2014
One of the biggest threats to critically endangered leatherback turtles is bycatch from industrial fishing in the open oceans.

Now, a team of researchers has satellite-tracked 135 leatherbacks with transmitters to determine the turtles’ patterns of movement in the Pacific Ocean. Combined with fisheries data, the researchers entered the information into a computer model to predict bycatch hotspots in the Pacific.

With this information, researchers and authorities hope to work with fisheries managers to avoid fishing when and where there is higher risk of also catching turtles in the area.

Though the ocean is vast and the turtles’ movements are dynamic and unpredictable, the small chance of an individual leatherback getting hooked or caught in fishing lines is multiplied by 760 million in the Pacific Ocean alone, said Stephen Morreale, referring to the number of longline hooks set annually in the Pacific.

Morreale is a Cornell University senior research associate and adjunct associate professor in the Department of Natural Resources. He is a co-author of the study published online Jan. 7 in the Proceedings of Royal Society B.

“It’s a waste,” Morreale said. “This is not a case of people merely trying to feed their families. The fishing industry does not want to catch leatherbacks, and the turtles that are caught are just discarded.”

In the Pacific, the researchers identified two genetically distinct populations, one western Pacific population that nests in Indonesia and feeds off the California coast, and another eastern Pacific population that nests in Costa Rica and Mexico and migrates along a corridor past the Galapagos Islands to a broad pelagic zone known as the South Pacific Gyre.

The maps reveal seasonal and geographic areas of greatest risk. For the western Pacific nesting populations, areas of highest risk included water around the Indonesian Islands near primary nesting beaches, and for the eastern Pacific populations, areas of greatest risk were in the South Pacific Gyre.

Leatherbacks are the largest sea turtles and the most massive reptile, reaching maximum weights of close to 2,000 pounds. The leathery-shelled turtles, which feed on jellyfish, use their flippers like wings to swim vast distances at surprising speeds; they also dive to depths of 1,200 meters, shuttling to and from the surface to breathe.

Once they hatch, males spend their entire lifetimes in the water. They take up to 20 years to reach maturity. As adults, females return throughout their lifetimes to the same nesting beach to lay clutches of 80 to 100 eggs in the sand, which they may repeat every two weeks over the course of a nesting season. Once they have laid all their eggs, they may not return for three to five years.

Because of the many risks over decades that leatherbacks face before they reach maturity, “an adult’s [ecological] value is huge,” said Morreale. Also, since so little has been known about their movements once they enter the ocean, conservationists have historically focused on protecting beach areas where they can be monitored and protected.

But “their protection at sea is extremely important,” and only recently, through satellite transmitters, are researchers beginning to understand the turtles’ complex habits in the ocean, which will hopefully lead to better protection, said Morreale.

Next steps for this research include acquiring more Pacificwide data for interactions between fisheries and turtles, as well as data for the Atlantic Ocean, Morreale added.

John Roe, an assistant professor at the University of North Carolina, Pembroke, was the paper’s lead author, along with Morreale and Frank Paladino at Indiana University-Purdue University at Fort Wayne, while Drexel University professor James Spotila assembled the research team.

Funding was provided mainly by the Lenfest Oceans Program.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Joe Schwartz | Newswise
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>