Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmon and Other Fish Predators Rely on ‘No Guts, No Glory’ Survival Tactic

19.09.2011
The phrase “no guts, no glory” doesn’t just apply to athletes who are striving to excel.

Salmon and other fish predators take the adage literally, by having up to three times the “gut” capacity they need on a daily basis just so they can “glory” when prey is abundant, University of Washington researchers have discovered.

It’s a previously unrecognized survival tactic that might apply to other top predators, such as wolves, lions and bears, according to Jonathan Armstrong, a UW doctoral student in aquatic and fishery sciences and lead author of a letter published recently in the journal Nature.

“The predatory fish we examined have the guts to consume two- to three-times the amount of food that they regularly encounter. This much excess capacity suggests predator-prey encounters are far patchier – or random – than assumed in biology and that binge-feeding enables predators to survive despite regular periods of famine,” Armstrong said. Co-author on the paper is Daniel Schindler, UW professor of aquatic and fishery sciences.

“Guts are really expensive organs in terms of metabolism,” Armstrong said. For instance, maintaining a gut can require 30 to 40 percent of the blood pumped by an animal’s heart.

Some animals have some capacity to grow or shrink their guts in response to changing conditions. For example, the digestive organs of birds that are about to migrate expand so they can eat more and fatten up. This is followed by a period when their guts atrophy and then, freed of the baggage of heavy guts, the birds take off.

That and results from lab studies led some scientists to assume that predators eliminate excess digestive capacity to save energy in times of famine. But the UW findings show that many fish species maintain a huge gut, which enables them to capitalize on unpredictable pulses of food.

“For predator fish, the world is a slot machine – sometimes they stumble upon small meals and other times they hit the jackpot. It’s just not as predictable as some have thought,” Armstrong said.

“Unlike some other animals, fish can’t just hoard their food behind a rock in the stream and eat it later. They need to binge during the good times so that they can grow and build energy reserves to survive the bad times.”

Armstrong and Schindler hope that their results can help with ecological models used in conservation and management.

“Ecosystem models typically assume relatively constant interactions between predator and prey but our results suggest such interactions are extremely patchy. We’re excited to see if including this ecological realism might improve the predictions of these models.”

The work was funded by the UW School of Aquatic and Fishery Sciences, National Science Foundation and the Gordon and Betty Moore Foundation.

For more information:
Armstrong, 541-840-6017, jonny5armstrong@gmail.com
Possible websites:
Armstrong
http://fish.washington.edu/news/newsletter/sprsum_2011/
studentprofiles.html#armstrong
UW School of Aquatic and Fishery Sciences
http://www.fish.washington.edu/index.html
Abstract Nature letter
http://www.nature.com/nature/journal/v476/n7358/full/nature10240.html?WT.ec_id=NATURE-20110804
Daniel Schindler
http://fish.washington.edu/research/schindlerlab/index.html
National Science Foundation
http://www.nsf.gov/
Gordon and Betty Moore Foundation
http://www.moore.org

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>