Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rodent Size Linked to Human Population and Climate Change

03.08.2009
While you probably hadn't noticed, the head shape and overall size of rodents has been changing over the past century. University of Illinois at Chicago ecologist Oliver Pergams has tied these changes to human population density and climate change.

You probably hadn't noticed -- but the head shape and overall size of rodents has been changing over the past century. A University of Illinois at Chicago ecologist has tied these changes to human population density and climate change.

The finding is reported by Oliver Pergams, UIC research assistant professor of biological sciences, in the July 31 issue of PLoS One.

Pergams said that such size-and-shape changes in mammals, occurring around the world in less than a century, are quite substantial.

He had done earlier studies on a century's worth of anatomic changes between two geographically isolated rodents -- Channel Island deer mice from coastal California and white-footed mice northwest of Chicago -- and noted fast change among both.

"I suspected they weren't unique examples," he said. "I wondered whether these changes were occurring elsewhere, whether they were global in nature, and what some of the causes may be."

Pergams examined specimen rodents from museums around the world, including the big collections held at Chicago's Field Museum and the Smithsonian in Washington. Altogether, he recorded more than 17,000 body and skull measurements from 1,300 specimens from 22 locations in Africa, the Americas and Asia. The animals were collected from 1892 to 2001, and Pergams compared those from before 1950 to those collected after.

He also compared specimens gathered from sparsely populated islands to those from the mainland, where human populations were denser.

Pergams found both increases and decreases in the 15 anatomic traits he measured, with changes as great as 50 percent over 80 years. Ten of the 15 traits were associated with changes in human population density, current temperature, or trends in temperature and precipitation.

"Rapid change, contrary to previous opinion, really seems to be happening quite frequently in a number of locations around the world," Pergams said. "There seem to be significant correlations with 'people-caused' parameters, such as population density and anthropologically-caused climate change."

While Pergams' study was by no means comprehensive, it was the first attempt of its kind to examine data on mammals from many global locations to find links between morphological change and variables such as population density and changing climate.

"Species can adapt quickly to rapid environmental changes -- quicker than many people have thought, especially for mammals," said Pergams. "Those mammals that can adapt quickly have a much higher chance to survive big environmental changes caused by humans. Understanding which species and populations have the greatest ability to change has a crucial impact on being able to conserve biodiversity."

The research was funded through a grant from the National Science Foundation and The Nature Conservancy. Climate change at various locations was tracked by Joshua Lawler of the University of Washington, who is co-author of the study.

An MP3 podcast on this subject is available at:

https://blackboard.uic.edu/bbcswebdav/institution/web/news/podcasts/PdCst64-July31%2709-Pergams.mp3

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>