Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers offer solutions to poisonous well-water crisis in southern Asia

02.06.2010
Over 100 million people in rural southern Asia are exposed every day to unsafe levels of arsenic from the well-water they drink. It more than doubles their risks for cancer, causes cardiovascular disease, and inhibits the mental development of children, among other serious effects.

The World Health Organization (WHO) has referred to the situation in Bangladesh, where an estimated 60 million people are affected, as "the largest mass poisoning of a population in history."

In the May 28 issue of the journal Science, researchers from Stanford University, the University of Delaware, and Columbia University review what scientists understand about this groundwater contamination crisis and offer solutions for the region, which spans Bangladesh, Cambodia, China, India, Myanmar, Nepal, Pakistan, and Vietnam.

Holly Michael, assistant professor of geological sciences in the College of Earth, Ocean, and Environment at the University of Delaware, is a co-author of the article, with Scott Fendorf from Stanford and Alexander van Geen from Columbia University. Fendorf received his doctorate from UD in 1992 and is now chair of environmental and Earth system science at Stanford.

Michael earned her doctorate from the Massachusetts Institute of Technology and joined the UD faculty in 2008. She traveled to Bangladesh to study the groundwater contamination problem firsthand during her postdoctoral training with the U.S. Geological Survey.

Arsenic occurs naturally in the Earth's crust. Tasteless, odorless, and colorless in solution, the element is a known carcinogen and can be detected in water only through testing.

The source of South Asia's arsenic contamination is the Himalaya Mountains. Minerals from rocks, eroding coal seams, and sediments contain arsenic and are carried into the major rivers that flow out of the mountains, including the Indus, Ganges, Brahmaputra, Irawaddy, Meghna, Mekong, and Red rivers. The flat, low-lying floodplains of these major rivers are the areas affected by groundwater contamination.

A logical solution is to dig deeper wells to reach uncontaminated aquifers for supplying safe drinking water. However, farmers also want access to this water to irrigate their rice paddies. And that's a problem, according to Michael's research.

In 2008, Michael showed through numerical modeling of groundwater flow in the Bengal Basin that an uncontaminated domestic well more than 500 feet (150 meters) could remain arsenic-free for at least a thousand years. However, she projected an entirely different scenario for deep irrigation wells, which use mechanized pumps instead of hand pumps to bring groundwater to the surface. The high volumes of water drawn by these irrigation systems induced a much faster downward migration of arsenic-contaminated surface water into the deep aquifer.

"To protect drinking water from arsenic contamination, we recommend that deeper wells only be used by individual households for drinking water and not for crop irrigation," Michael says.

In addition to preserving deep wells specifically for drinking water, she and her co-authors also recommend these measures:

Reinvigorating well-testing campaigns by governments and international organizations.
Better use of existing geological data and the compilation of test results to target zones that are low in arsenic for the installation of community wells.
The re-testing of tens of thousands of deep wells, particularly those that have been used for both domestic and farming purposes.

The choice of mitigation option can be situation-dependent: filters or other alternatives may be the best choice in some areas.

"Obviously, arsenic-contaminated drinking water is a huge problem from a human health perspective," Michael says. "We've shown that there are some viable options in South Asia, but there is much more that we need to understand."

Currently, Michael is working to model arsenic transport, how it may move in the future in the aquifer system in Bangladesh. She also is working with the World Bank on a study of groundwater sustainability in Bangladesh related to water supply and vulnerability of coastal groundwater to sea-level rise.

Michael's research in the latest issue of Science was supported by the U.S. Geological Survey, the U.S. Agency for International Development, the British Department of International Development, and UNICEF.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>