Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers offer solutions to poisonous well-water crisis in southern Asia

02.06.2010
Over 100 million people in rural southern Asia are exposed every day to unsafe levels of arsenic from the well-water they drink. It more than doubles their risks for cancer, causes cardiovascular disease, and inhibits the mental development of children, among other serious effects.

The World Health Organization (WHO) has referred to the situation in Bangladesh, where an estimated 60 million people are affected, as "the largest mass poisoning of a population in history."

In the May 28 issue of the journal Science, researchers from Stanford University, the University of Delaware, and Columbia University review what scientists understand about this groundwater contamination crisis and offer solutions for the region, which spans Bangladesh, Cambodia, China, India, Myanmar, Nepal, Pakistan, and Vietnam.

Holly Michael, assistant professor of geological sciences in the College of Earth, Ocean, and Environment at the University of Delaware, is a co-author of the article, with Scott Fendorf from Stanford and Alexander van Geen from Columbia University. Fendorf received his doctorate from UD in 1992 and is now chair of environmental and Earth system science at Stanford.

Michael earned her doctorate from the Massachusetts Institute of Technology and joined the UD faculty in 2008. She traveled to Bangladesh to study the groundwater contamination problem firsthand during her postdoctoral training with the U.S. Geological Survey.

Arsenic occurs naturally in the Earth's crust. Tasteless, odorless, and colorless in solution, the element is a known carcinogen and can be detected in water only through testing.

The source of South Asia's arsenic contamination is the Himalaya Mountains. Minerals from rocks, eroding coal seams, and sediments contain arsenic and are carried into the major rivers that flow out of the mountains, including the Indus, Ganges, Brahmaputra, Irawaddy, Meghna, Mekong, and Red rivers. The flat, low-lying floodplains of these major rivers are the areas affected by groundwater contamination.

A logical solution is to dig deeper wells to reach uncontaminated aquifers for supplying safe drinking water. However, farmers also want access to this water to irrigate their rice paddies. And that's a problem, according to Michael's research.

In 2008, Michael showed through numerical modeling of groundwater flow in the Bengal Basin that an uncontaminated domestic well more than 500 feet (150 meters) could remain arsenic-free for at least a thousand years. However, she projected an entirely different scenario for deep irrigation wells, which use mechanized pumps instead of hand pumps to bring groundwater to the surface. The high volumes of water drawn by these irrigation systems induced a much faster downward migration of arsenic-contaminated surface water into the deep aquifer.

"To protect drinking water from arsenic contamination, we recommend that deeper wells only be used by individual households for drinking water and not for crop irrigation," Michael says.

In addition to preserving deep wells specifically for drinking water, she and her co-authors also recommend these measures:

Reinvigorating well-testing campaigns by governments and international organizations.
Better use of existing geological data and the compilation of test results to target zones that are low in arsenic for the installation of community wells.
The re-testing of tens of thousands of deep wells, particularly those that have been used for both domestic and farming purposes.

The choice of mitigation option can be situation-dependent: filters or other alternatives may be the best choice in some areas.

"Obviously, arsenic-contaminated drinking water is a huge problem from a human health perspective," Michael says. "We've shown that there are some viable options in South Asia, but there is much more that we need to understand."

Currently, Michael is working to model arsenic transport, how it may move in the future in the aquifer system in Bangladesh. She also is working with the World Bank on a study of groundwater sustainability in Bangladesh related to water supply and vulnerability of coastal groundwater to sea-level rise.

Michael's research in the latest issue of Science was supported by the U.S. Geological Survey, the U.S. Agency for International Development, the British Department of International Development, and UNICEF.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>