Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking down water leaks

05.12.2007
A large fraction of fresh water never actually reaches the consumer, but pours out of holes in the supply pipes and seeps unused into the ground. A new, cost-efficient sensor currently being tested in Pisa, Italy, has been designed to locate these leaks.

The statistics are alarming: Up to 40 percent of fresh water flowing through supply pipes today never reaches the end consumer, but seeps out unused through leaks and into the ground. This is because many of the pipes are now over a hundred years old and correspondingly fissured. So far, there has been no cost-efficient way of detecting these leaks. Conventional high-end flow sensors, which cost 1000 to 2000 euros, are too expensive to be used throughout entire networks.

On behalf of Pisa’s water supply company Acque S.p.A., researchers at the Fraunhofer Institute for Silicon Technology ISIT in Itzehoe and their Italian colleagues at Sensordynamics have developed a cost-efficient alternative: silicon-based sensors. These only cost around five percent of the average price of their high-end counterparts. The new probes function according to the same principle as mass air flow sensors, which have been used for some time to measure the air intake in car engines. “Now we are able to use these sensors in liquids for the first time,” says ISIT project manager Dr. Peter Lange.

At the heart of the sensor are two heating wires, which are mounted one behind the other on a thin membrane. An electric current flowing through the wires heats them to a constant temperature. When cold water flows past them, the front wire gives off more heat into the water than the rear one, which is in its slipstream. Accordingly, a higher current has to flow through the front wire in order to keep the temperature constant. On the basis of this difference in electrical current, it is possible to determine the speed and volume of the water traveling through the pipes.

The special feature of this sensor is that it operates in pulse mode. The wires are not heated constantly, but only for about three seconds per minute, which means that they are cold most of the time. This helps to reduce lime deposits and air bubbles, which could otherwise distort the measurements. Another advantage of pulsed operation is that it saves energy, and the batteries last much longer. The first tests were successful: The sensors survived for three months under water without suffering any damage. For further tests, the researchers integrated 70 prototypes into Pisa’s water pipes just a few weeks ago. There, they must withstand the flow for several months at full operation, measuring how much water is traveling through the supply pipes and where it is lost. “The data can be retrieved by mobile phone or radio,” says Lange. If the tests are successful, it is perfectly conceivable that the sensors will be produced at a rate of 50,000 to 500,000 per year.

Press Office | alfa
Further information:
http://www.fraunhofer.de

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>