Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student sensor sniffs out danger

05.12.2007
A team of students from the University of Glasgow have designed a device which can sniff out pollution and then generate its own electricity to set off an early-warning system.

The self-powered biosensor acts just like a canary down a mine shaft and could be used to warn of chemical leaks before they become too damaging to humans and the environment.

Millions of pounds are spent each year preventing industrial accidents, but this simple sensor can make detection both simpler and cheaper. It can sense leaks at industrial plants, oil pipelines and landfill sites.

The students came up with the world’s first self-powered biosensor as part of a prestigious international competition.

And the judges were so impressed with the device, they awarded them first prize.

Student Scott Ramsay said: “The research involved engineering a microbe that detects toxic chemicals — like those resulting from oil and natural gas refineries. When the microbes detect the offending chemicals they synthesise a chemical causing the fuel cells to generate electricity that can trigger a signal to act as an early warning system.

“It could be also integrated into a wireless early warning communications systems leading to a network of analytical stations in rivers, lakes and wells allowing industry to measure the amount of toxins in effluent so they can keep within environmentally safe and legal levels. The technology could also be further developed to detect pesticide levels, for example, pesticides in baby food or toxins in drinking water.

“Our sensor won the first prize in the Environment section of the International Genetically Engineered Machine awards.

“The competition involved teams from leading universities around the world designing and building genetically engineered devices in the newly emerging field of synthetic biology. The work took place over the summer and culminated in an event at the world-renowned Massachusetts Institute of Technology in Boston, where 53 teams from 20 countries presented their research to an international set of judges.”

The University of Glasgow are now looking to secure funding to develop the sensor further.

The multi-disciplinary team of 11 students combined their knowledge of molecular biology, computing, engineering, mathematics and statistics to win first prize in Environment track, and a gold medal, successfully overcoming strong competition from other teams including Ivy League universities MIT and Brown.

Team mentor and Biochemistry and Molecular Biology Lecturer, Dr Susan Rosser said: “This is a fantastic achievement for this young team. It is the first time Glasgow has entered the iGEM competition, and to see real life practical applications from the project is excellent.”

Professor David Gilbert from the University’s Department of Computing Science said: “The team really worked together so well, and put a lot of effort into their project. I am also proud of all the members of the advisory team who made themselves available over the summer. This result has helped to put Glasgow on the international map in synthetic biology.”

Dr Ed Hutchinson, Project Manager of Scottish Enterprise's Technology Team, who provided sponsorship for the project, said: "The team's success in such a prestigious international competition is a fantastic achievement. Synthetic biology is an emerging field of science with enormous commercial potential across a range of industries

"For Scotland to be seen to be leading in this area would help to strengthen our already world capabilities spanning electronics, engineering and life sciences and we will be looking at how we can work alongside our universities and research institutes to capitalise on the opportunities that this could have for growing Scotland's economy."

Martin Shannon | alfa
Further information:
http://www.gla.ac.uk/news/headline_56846_en.html

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>