Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student sensor sniffs out danger

05.12.2007
A team of students from the University of Glasgow have designed a device which can sniff out pollution and then generate its own electricity to set off an early-warning system.

The self-powered biosensor acts just like a canary down a mine shaft and could be used to warn of chemical leaks before they become too damaging to humans and the environment.

Millions of pounds are spent each year preventing industrial accidents, but this simple sensor can make detection both simpler and cheaper. It can sense leaks at industrial plants, oil pipelines and landfill sites.

The students came up with the world’s first self-powered biosensor as part of a prestigious international competition.

And the judges were so impressed with the device, they awarded them first prize.

Student Scott Ramsay said: “The research involved engineering a microbe that detects toxic chemicals — like those resulting from oil and natural gas refineries. When the microbes detect the offending chemicals they synthesise a chemical causing the fuel cells to generate electricity that can trigger a signal to act as an early warning system.

“It could be also integrated into a wireless early warning communications systems leading to a network of analytical stations in rivers, lakes and wells allowing industry to measure the amount of toxins in effluent so they can keep within environmentally safe and legal levels. The technology could also be further developed to detect pesticide levels, for example, pesticides in baby food or toxins in drinking water.

“Our sensor won the first prize in the Environment section of the International Genetically Engineered Machine awards.

“The competition involved teams from leading universities around the world designing and building genetically engineered devices in the newly emerging field of synthetic biology. The work took place over the summer and culminated in an event at the world-renowned Massachusetts Institute of Technology in Boston, where 53 teams from 20 countries presented their research to an international set of judges.”

The University of Glasgow are now looking to secure funding to develop the sensor further.

The multi-disciplinary team of 11 students combined their knowledge of molecular biology, computing, engineering, mathematics and statistics to win first prize in Environment track, and a gold medal, successfully overcoming strong competition from other teams including Ivy League universities MIT and Brown.

Team mentor and Biochemistry and Molecular Biology Lecturer, Dr Susan Rosser said: “This is a fantastic achievement for this young team. It is the first time Glasgow has entered the iGEM competition, and to see real life practical applications from the project is excellent.”

Professor David Gilbert from the University’s Department of Computing Science said: “The team really worked together so well, and put a lot of effort into their project. I am also proud of all the members of the advisory team who made themselves available over the summer. This result has helped to put Glasgow on the international map in synthetic biology.”

Dr Ed Hutchinson, Project Manager of Scottish Enterprise's Technology Team, who provided sponsorship for the project, said: "The team's success in such a prestigious international competition is a fantastic achievement. Synthetic biology is an emerging field of science with enormous commercial potential across a range of industries

"For Scotland to be seen to be leading in this area would help to strengthen our already world capabilities spanning electronics, engineering and life sciences and we will be looking at how we can work alongside our universities and research institutes to capitalise on the opportunities that this could have for growing Scotland's economy."

Martin Shannon | alfa
Further information:
http://www.gla.ac.uk/news/headline_56846_en.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>