Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student sensor sniffs out danger

05.12.2007
A team of students from the University of Glasgow have designed a device which can sniff out pollution and then generate its own electricity to set off an early-warning system.

The self-powered biosensor acts just like a canary down a mine shaft and could be used to warn of chemical leaks before they become too damaging to humans and the environment.

Millions of pounds are spent each year preventing industrial accidents, but this simple sensor can make detection both simpler and cheaper. It can sense leaks at industrial plants, oil pipelines and landfill sites.

The students came up with the world’s first self-powered biosensor as part of a prestigious international competition.

And the judges were so impressed with the device, they awarded them first prize.

Student Scott Ramsay said: “The research involved engineering a microbe that detects toxic chemicals — like those resulting from oil and natural gas refineries. When the microbes detect the offending chemicals they synthesise a chemical causing the fuel cells to generate electricity that can trigger a signal to act as an early warning system.

“It could be also integrated into a wireless early warning communications systems leading to a network of analytical stations in rivers, lakes and wells allowing industry to measure the amount of toxins in effluent so they can keep within environmentally safe and legal levels. The technology could also be further developed to detect pesticide levels, for example, pesticides in baby food or toxins in drinking water.

“Our sensor won the first prize in the Environment section of the International Genetically Engineered Machine awards.

“The competition involved teams from leading universities around the world designing and building genetically engineered devices in the newly emerging field of synthetic biology. The work took place over the summer and culminated in an event at the world-renowned Massachusetts Institute of Technology in Boston, where 53 teams from 20 countries presented their research to an international set of judges.”

The University of Glasgow are now looking to secure funding to develop the sensor further.

The multi-disciplinary team of 11 students combined their knowledge of molecular biology, computing, engineering, mathematics and statistics to win first prize in Environment track, and a gold medal, successfully overcoming strong competition from other teams including Ivy League universities MIT and Brown.

Team mentor and Biochemistry and Molecular Biology Lecturer, Dr Susan Rosser said: “This is a fantastic achievement for this young team. It is the first time Glasgow has entered the iGEM competition, and to see real life practical applications from the project is excellent.”

Professor David Gilbert from the University’s Department of Computing Science said: “The team really worked together so well, and put a lot of effort into their project. I am also proud of all the members of the advisory team who made themselves available over the summer. This result has helped to put Glasgow on the international map in synthetic biology.”

Dr Ed Hutchinson, Project Manager of Scottish Enterprise's Technology Team, who provided sponsorship for the project, said: "The team's success in such a prestigious international competition is a fantastic achievement. Synthetic biology is an emerging field of science with enormous commercial potential across a range of industries

"For Scotland to be seen to be leading in this area would help to strengthen our already world capabilities spanning electronics, engineering and life sciences and we will be looking at how we can work alongside our universities and research institutes to capitalise on the opportunities that this could have for growing Scotland's economy."

Martin Shannon | alfa
Further information:
http://www.gla.ac.uk/news/headline_56846_en.html

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>