Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For migrating sparrows, kids have a compass, but adults have the map

07.11.2007
Even bird brains can get to know an entire continent -- but it takes them a year of migration to do so, suggests a Princeton research team.

The scientists have shown that migrating adult sparrows can find their way to their winter nesting grounds even after being thrown off course by thousands of miles, adjusting their flight plan to compensate for the displacement. However, similarly displaced juvenile birds, which have not yet made the complete round trip, are only able to orient themselves southward, indicating that songbirds' innate sense of direction must be augmented with experience if they are to find their way home.

"This is the first experiment to show that when it comes to songbird migration, age makes a difference," said team member Martin Wikelski, an associate professor of ecology and evolutionary biology. "The results indicate that the adult birds possess a navigational map that encompasses at least the continental U.S., and possibly the entire globe."

Two longstanding questions about migrant songbirds are how quickly they recover when thrown off course -- as they can be when they encounter powerful winds -- and just what navigational tools they use to do so. To address the two questions, the team decided to fit a group of white-crowned sparrows with tiny radio transmitters no heavier than a paper clip and track their movements from a small plane.

The team first brought 30 sparrows to Princeton from northern Washington state, where the birds had been in the process of migrating southward from their summer breeding grounds in Alaska. Half the birds were juveniles of about three months in age that had never migrated before, while the other half were adults that had made the round trip to their wintering site in the southwestern United States at least once.

After the birds were released, they attempted to resume their migration, but both age groups grew disoriented quickly.

"All the birds scattered at first," Wikelski said. "It was clear they were turned around for a couple of days. But while the adults eventually realized they had to head southwest, the younger birds resumed flying straight southward as though they were still in Washington."

The adults, said team member Richard Holland, recovered their bearings because they possess something the younger birds do not, which is an internal map.

"These birds need two things to know where they are and migrate effectively: a 'map' and a 'compass,'" said Holland, a postdoctoral research associate in Wikelski's lab. "What we've found is that juveniles use their compass, but the adults also use their map."

Holland said the birds do not lose the compass as they age, but somehow develop the map, eventually applying both tools to keep on track during migratory flights. Scientists already have determined that the compass is based on the sun or the magnetic field, but where the map comes from remains a mystery -- one that the team will be exploring in coming years.

"It could be the map also derives from the planet's magnetic field," Holland said. "But there are so many local magnetic anomalies in the Earth's crust that it's also possible they are navigating by sense of smell. It sounds crazy, but there's a lot of evidence that homing pigeons navigate this way, so we need to investigate that idea further."

Chad Boutin | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>