Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Journal Retracts Support for Claims of Invasive GM Corn

08.04.2002


The journal Nature has announced that a report claiming that genetically engineered DNA had found its way into wild Mexican corn should not have been published. The announcement, unveiled online last Thursday, came with two critiques of the study and a rebuttal by its authors. Though they are not retracting the original article Nature editor Philip Campbell states that the journal has decided to make the circumstances surrounding it clear and "allow our readers to judge the science for themselves."



The paper in question, by David Quist and Ignacio H. Chapela of the University of California, Berkeley, appeared in the November 29, 2001 issue of the journal. In it, the team reported that native corn from the southern Mexico state of Oaxaca contained genetically modified material, despite a country-wide ban on engineered corn since 1998. They further posited that the genes spliced into the plants were unstable and scattered around the genome in unpredictable ways.

It was this second conclusion that provoked the most reproach. "The discovery of transgenes fragmenting and promiscuously scattering throughout genomes would be unprecedented and is not supported by Quist and Chapela’s data," contend Matthew Metz of the University of Washington and Johannes Futterer of the Institute of Plant Sciences in Switzerland in the first criticism on the Nature Web site. They suggest that Quist and Chapela incorrectly interpreted results of a technique known as inverse PCR (i-PCR), which allows scientists to examine a stretch of unknown DNA that lies adjacent to an identified section. The technique, Quist and Chapela’s detractors say, is prone to artifacts and misinterpretation. "Transgenic corn may be being grown illegally in Mexico," Nick Kaplinsky of the University of California, Berkeley, and colleagues write in the second critique, "but Quist and Chapela’s claim that these transgenes have pervaded the entire native maize genome is unfounded."


Quist and Chapela disagree, however. In their rebuttal, they present new data and contend that it "confirms our original detection of transgenic DNA integrated into the genomes of local land races in Oaxaca." Yet they do concede that some of the concerns pertaining to the i-PCR technique--and hence the assertion that the foreign genes are dispersed around the genome--are well founded.

Consensus on this issue may well prove elusive, especially in light of the tempestuous debate already surrounding genetically modified foods and biotechnology. But further study is warranted because, as Kaplinsky and his colleagues point out, "it is important for information about genetically modified organisms to be reliable and accurate, as important policy decisions are at stake."

Sarah Graham | Scientific American

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>