Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic tubes could cut greenhouse gas emissions from power stations

03.08.2007
Greenhouse gas emissions from power stations could be cut to almost zero by controlling the combustion process with tiny tubes made from an advanced ceramic material, claim British engineers today (3 August 2007).

The material, known as LSCF, has the remarkable property of being able to filter oxygen out of the air. By burning fuel in pure oxygen, it is possible to produce a stream of almost pure carbon dioxide, which has commercial potential for reprocessing into useful chemicals.

LSCF is not a brand new material - it was originally developed for fuel cell technology - but engineers at Newcastle University in collaboration with Imperial College London, have developed it for potential use in reducing emissions for gas-fired power stations and possibly coal and oil-fired electricity generation as well.

Conventional gas-fired power stations burn methane in a stream of air, producing a mixture of nitrogen and greenhouse gases including carbon dioxide and nitrogen oxides, which are emitted into the atmosphere. Separating the gases is not practical because of the high cost and large amount of energy needed to do so.

However, the LSCF tubes would allow only the oxygen component of air to reach the methane gas, resulting in the production of almost pure carbon dioxide and steam, which can easily be separated by condensing out the steam as water.

The resulting stream of carbon dioxide could be piped to a processing plant for conversion into chemicals such as methanol, a useful industrial fuel and solvent.

The new combustion process has been developed and tested in the laboratory by Professor Ian Metcalfe, Dr Alan Thursfield and colleagues in the School of Chemical Engineering and Advanced Materials at Newcastle University, in collaboration with Dr Kang Li in the Chemical Engineering Department at Imperial College London. The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC).

Details of the research and development project are published today (3 August 2007) simultaneously in two technical publications - Materials World and The Chemical Engineer. A series of research papers have also been published in academic journals and presented at conferences, including the 16th International Conference on Solid State Ionics in Shanghai in July 2007.

The LSCF tubes look like small, stiff, drinking straws and are permeable to oxygen ions - individual atoms carrying an electrical charge. Crucially, LSCF is also resistant to corrosion or decomposition at typical power station operating temperatures of around 800C.

When air is blown around the outside of the tubes, oxygen is able to pass through the wall of the tube to the inside, where it combusts with methane gas that is being pumped through the centre of the tubes.

The oxygen-depleted air, which consists mainly of nitrogen, can be returned to the atmosphere with no harmful effects on the environment, while the carbon dioxide can be collected separately from the inside of the tubes after combustion.

An alternative would be to control the flow of air and methane so that only partial combustion took place. This would result in a flow of 'synthesis gas', a mixture of carbon monoxide and hydrogen, which can easily be converted into a variety of useful hydrocarbon chemicals.

The tubes of LSCF, which stands for Lanthanum-Strontium-Cobalt-Ferric Oxide, have been tested successfully in the laboratory and the design is attracting interest from the energy industry. The Newcastle team is now carrying out further tests on the durability of the tubes to confirm their initial findings that they could withstand the conditions inside a power station combustion chamber for a reasonable length of time.

Although it has not yet been attempted, it should be possible to assemble a power station combustion chamber from a large number of the tubes, with space between them for air to circulate.

In theory the technology could also be applied to coal and oil-fired power stations, provided that the solid and liquid fuels were first converted into gas. This operation is simple in theory but would add to the cost and complexity of running a power station.

Government statistics suggest that the UK energy industry produces over 200 million tonnes of carbon dioxide per year, which is more than one-third of the country's total carbon dioxide emissions.

Professor Metcalfe said: 'The cheapest way to dispose of waste carbon dioxide from combustion is to release it into the atmosphere. We have been doing this since humans first discovered how to make fire.'

'The technology we have developed may provide a viable alternative, although whether it is economical to introduce it will depend largely upon the carbon credit system that Governments operate in the future.'

LSCF is a relatively new material and over the past ten years or so been the subject of research in many countries, particularly the USA, mainly into its potential use as a cathode in fuel cells.

* Newcastle University is currently leading a consortium bidding to host the Energy Technologies Institute, a billion-pound programme launched by the Government and energy companies to develop new and renewable sources of energy and tackle climate change.

* Energy is also one of the four major themes of the Newcastle Science City initiative, in which the university is a core partner. The Science City initiative was launched by Gordon Brown, who identified six cities with potential to develop knowledge-based economies outside London and the South East.

Professor Ian Metcalfe | alfa
Further information:
http://www.ncl.ac.uk/sciencecity/
http://www.ncl.ac.uk/ceam/staff/imetcalfe.htm

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>