Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seawater intrusion is the first cause of contamination of coastal aquifers

30.07.2007
Seawater intrusion is often the consequence of freshwater aquifers overexploitation. This is a very common and serious phenomenon all over the Mediterranean basin, as well as in other areas with similar weather conditions and population.

In Spain, the most severely affected areas by seawater intrusion are the Mediterranean and South-Atlantic coastlines. Given that Spain is located on a peninsula, seawater intrusion is currently one of the main causes of groundwater pollution. In fact, “about 60% of Spanish coastal aquifers are contaminated by seawater intrusion, a generalised phenomenon in 20% of cases”, points out Prof. José Benavente Herrera, a researcher from the Water Institute of the University of Granada (Universidad de Granada [http://www.ugr.es]), Spain, and senior lecturer at the department of Geodynamics.

According to Prof. Benavente, “freshwater contaminated by a 5% of seawater can no longer be used for common purposes, such as human use, agriculture or farming. That is the reason why salinisation of coastal aquifers – mainly a consequence of an uncontrolled or deficient management – is such a serious phenomenon”. In Southern Spain, “seawater intrusion is contaminating some of the most important aquifer systems in economic terms”, both on the Mediterranean and the Atlantic coastlines. In the world, the most affected areas include Mexico, the North of the Pacific and Atlantic coastlines, Chile, Peru and Australia.

Solutions: prevention and control

A good knowledge of aquifers (subsoil) enables scientists to determine the ‘critical discharge’, i.e. the extent to what aquifers can support water catchments without seawater intrusion taking place. Experts in hydrogeology acknowledge that such is a complex question, but they can currently give advice on prevention and control of situations caused by human activity.

Prof. Benavente states that solutions to prevent salinisation should start by studying every aquifer individually. Therefore, reducing freshwater pumping should be followed by other measures, such as analysing the aquifer’s situation before building reservoirs upstream, as this will account for a serious minimisation of its natural recharge and, possibly, for salinisation if the return flow is not guaranteed. In fact, “ironic as it may be, building up an artificial reservoir could render useless the natural groundwater reservoir downstream”.

Also, says Benavente, in very localised seawater intrusion areas, reducing pumping or extracting water from either smaller or greater depths become indispensable measures. According to Benavente, artificial recharge of aquifers is another efficient measure to prevent salinisation, as it stops seawater intrusion and increases freshwater levels. In this sense, for instance, clean water obtained from urban sewage purification can be used for irrigation of crops and golf fields as well as to create a hydraulic barrier against seawater intrusion.

Some regions in the world – including Spain – are already implementing these measures. Prof. Benavente highlights Los Angeles, USA, and river Llobregat delta, Spain, where sewage water injection as mentioned above has proven to be useful to solve salinisation problems.

Teamwork experience

Among other research works, Prof. Benavente has recently coordinated the European Union Project SWIMED on Sustainable Water Management in Mediterranean coastal aquifers. Scientists from France, Italy, Morocco, the Palestinian Authority, Spain, Switzerland and Tunisia participated in this project, with a budget of 700,000 euros.

Prof. Benavente, together with other scientists from the Water Institute at the University of Granada [http://www.ugr.es], Spain, and from the other countries taking part in SWIMED, has published his research in prestigious international journals specialised in water management, such as Environmental Geology or Water Resources Management.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>