Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Renewable energy wrecks environment

Renewable does not mean green. That is the claim of Jesse Ausubel of the Rockefeller University in New York. Writing in Inderscience's International Journal of Nuclear Governance, Economy and Ecology, Ausubel explains that building enough wind farms, damming enough rivers, and growing enough biomass to meet global energy demands will wreck the environment.

Ausubel has analysed the amount of energy that each so-called renewable source can produce in terms of Watts of power output per square metre of land disturbed. He also compares the destruction of nature by renewables with the demand for space of nuclear power. "Nuclear energy is green," he claims, "Considered in Watts per square metre, nuclear has astronomical advantages over its competitors."

On this basis, he argues that technologies succeed when economies of scale form part of their evolution. No economies of scale benefit renewables. More renewable kilowatts require more land in a constant or even worsening ratio, because land good for wind, hydropower, biomass, or solar power may get used first.

A consideration of each so-called renewable in turn, paints a grim picture of the environmental impact of renewables. Hypothetically flooding the entire province of Ontario, Canada, about 900,000 square km, with its entire 680,000 billion litres of rainfall, and storing it behind a 60 metre dam would only generate 80% of the total power output of Canada's 25 nuclear power stations, he explains. Put another way, each square kilometre of dammed land would provide the electricity for just 12 Canadians.

Biomass energy is also horribly inefficient and destructive of nature. To power a large proportion of the USA, vast areas would need to be shaved or harvested annually. To obtain the same electricity from biomass as from a single nuclear power plant would require 2500 square kilometres of prime Iowa land. "Increased use of biomass fuel in any form is criminal," remarks Ausubel. "Humans must spare land for nature. Every automobile would require a pasture of 1-2 hectares."

Turning to wind Ausubel points out that while wind farms are between three to ten times more compact than a biomass farm, a 770 square kilometre area is needed to produce as much energy as one 1000 Megawatt electric (MWe) nuclear plant. To meet 2005 US electricity demand and assuming round-the-clock wind at the right speed, an area the size of Texas, approximately 780,000 square kilometres, would need to be covered with structures to extract, store, and transport the energy.

One hundred windy square metres, a good size for a Manhattan apartment, could power an electric lamp or two, but not the laundry equipment, microwave oven, plasma TV, and computer. New York City would require every square metre of Connecticut to become a wind farm to fully power all its electrical equipment and gadgets.

Solar power also comes in for criticism. A photovoltaic solar cell plant would require painting black about than 150 square kilometres plus land for storage and retrieval to equal a 1000 MWe nuclear plant. Moreover, every form of renewable energy involves vast infrastructure, such as concrete, steel, and access roads. "As a Green, one of my credos is 'no new structures' but renewables all involve ten times or more stuff per kilowatt as natural gas or nuclear," Ausubel says.

While the full footprint of uranium mining might add a few hundred square kilometres and there are considerations of waste storage, safety and security, the dense heart of the atom offers far the smallest footprint in nature of any energy source. Benefiting from economies of scale, nuclear energy could multiply its power output and even shrink the energy system, in the same way that computers have become both more powerful and smaller.

"Renewables may be renewable but they are not green," asserts Ausubel", If we want to minimize new structures and the rape of nature, nuclear energy is the best option."

Jim Corlett | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>