Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Piecing together the cyanobacteria puzzle

Blue green algae are significant species in the global carbon cycle because they transform nitrogen gas from the atmosphere into a useable nutrient, enabling photosynthesis in nutrient-poor waters.

Using NanoSIMS (high- resolution secondary ion mass spectrometer), Lawrence Livermore National Laboratory, USC and Portland State University scientists showed that they could image and track nutrient uptake in blue green algae at the nanoscale. The new method should help to clear up the age-old puzzle of how different species of blue green algae can “fix” or take up atmospheric nitrogen and carbon in a single cell organism. Carbon fixation during photosynthesis produces oxygen, which inhibits nitrogen fixation.

Different species of blue green algae solve the problem in different ways and scientists still don’t understand how some of the most important species can get both of these jobs done.

To develop the new method, the researchers studied the freshwater algae, Anabaena oscillarioides, which separates the two processes into adjacent cells that share the products. LLNL researchers Peter Weber, Jennifer Pett-Ridge, Stewart Fallon and Ian Hutcheon used NanoSIMS to track the uptake and movement of carbon and nitrogen inside two types of cells in the algae: vegetative cells, which perform carbon fixation, and heterocysts, thick-walled relatives that pull in nitrogen.

NanoSIMS provides the ability to map distributions of elements and isotopes with 50-100-nanometer resolution. The device allowed the scientists to measure the carbon and nitrogen uptake and subsequent distribution at the cellular and subcellular level.

“The method shows the dynamics of resource uptake and redistribution down to the level of sub-micron nitrogen storage and cell wall formation during cell division,” Weber said.

The researchers used stable isotope tracers in nitrogen and carbon dioxide gases to track nitrogen and carbon fixation. After a few hours of incubation, vegetative cells exhibited a large enrichment in carbon and nitrogen isotopes because of active carbon and nitrogen uptake and intercellular exchange. During photosynthesis, most of the newly fixed carbon was allocated to vegetative cells because they are rapidly dividing, while heterocysts require very little carbon because they are non-growing cells.

The NanoSIMS images showed that mature heterocysts are distinguishable from the vegetative cells based on their size, shape and intercellular distance.

The method also showed that newly fixed nitrogen levels are higher in vegetative cells than in mature heterocysts.

“We were able to see on a cell by cell basis how newly fixed nitrogen is rapidly exported from the heterocysts to vegetative cells, keeping pace with the nitrogen demands of the growing and dividing vegetative cells,” Weber said. “Now we can take these results and apply them to poorly understood species.”

USC’s Kenneth Nealson predicts that NanoSIMS opens up a whole new field of study.

“You can use this technology to look at things going on inside the cell,” he said. “This is going to change the way that we do a lot of microbiology.”

The research appears in the latest issue of The International Society for Microbial Ecology (ISME) Journal.

Anne Stark | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>