Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is climate change likely to increase disease in corals?

08.05.2007
Coral reefs, among Earth’s richest ecosystems, traditionally teem with an abundance of life. But in recent years, corals have been dying in droves.

Scientists suspect a variety of factors, ranging from accidental damage from fishing activity to the effects of polluted runoff from land. One threat that appears to be growing dramatically in Australia’s famed Great Barrier Reef is white syndrome, a disease that is spreading rapidly, leaving stripes of dead corals like ribbons of death in its wake. In a new study published by PLoS Biology, John Bruno, Amy Melendy, and colleagues show that the interaction between anomalously high ocean temperatures and the extent of coral cover is likely to account for the occurrence of the disease.

Global warming has seemed a likely suspect for several reasons. Past epidemiological studies—across a broad range of life forms—have shown that stress, including the stress of changing environmental conditions, often increases disease susceptibility. As temperatures rise, pathogens can reproduce more quickly. The fact that coral diseases seem to spread faster in summer also provides support for the notion that warmer temperatures may be involved. The authors conducted a regional-scale longitudinal study of the hypothesized link between warm temperature deviations and the presence of white syndrome, considering the density of coral cover as an additional variable of interest. To quantify temperature fluctuations, the researchers used a high resolution dataset on ocean surface temperature provided by the United States National Oceanic and Atmospheric Association and the University of Miami. They used the dataset to calculate w eekly sea surface temperature anomalies (WSSTAs), instances in which temperature was higher by 1°C or more from mean records for that week, for 48 reefs within the Great Barrier Reef. To evaluate the extent of white syndrome and coral cover, the researchers used data collected by the Australian Institute of Marine Science Long-term Monitoring Program on 48 reefs from a 1,500-kilometer stretch of the Great Barrier Reef from 1998 to 2004 at a depth of six to nine meters. Divers counted the number of infected colonies on each reef. Coral cover, the amount of the bottom with living corals, was measured from videos taken of the reefs.

The researchers then evaluated the relationship between the occurrence of white syndrome and three variables: number of WSSTAs occurring during the previous 52 weeks, coral cover, and the interaction between the two. They found that the third variable showed a statistically significant correlation with number of white syndrome cases, indicating that the presence of both conditions (temperature anomalies and high coral cover) creates the conditions in which white syndrome outbreaks are most likely to occur. In other words, WSSTAs were a necessary but not sufficient condition for white syndrome outbreaks, whereas the combination of heat stress and a dense colony was deadly.

What does this mean for corals and the ecosystem they support? If global warming increases the incidence of warm temperature anomalies in tropical oceans the years ahead, these results suggest that corals in high-cover areas will be increasingly vulnerable to white disease. If the effect is large enough, the tightly woven web of life within coral reefs could begin to unravel, potentially transforming habitats that were once among the planet’s richest ecosystems into underwater wastelands. This strong evidence for a link among a warming ocean, coral density, and white syndrome provides a rich foundation for further work to understand the spread of coral disease in the Great Barrier Reef. It also provides valuable insights into marine epidemiology that could be of much value in investigating and potentially mitigating other devastating global warming-related disease outbreaks in the world’s vast and vulnerable oceans.

Citation: Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, et al. (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5(6): e124. doi:10.1371/journal.pbio.0050124.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050124

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>