Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is climate change likely to increase disease in corals?

08.05.2007
Coral reefs, among Earth’s richest ecosystems, traditionally teem with an abundance of life. But in recent years, corals have been dying in droves.

Scientists suspect a variety of factors, ranging from accidental damage from fishing activity to the effects of polluted runoff from land. One threat that appears to be growing dramatically in Australia’s famed Great Barrier Reef is white syndrome, a disease that is spreading rapidly, leaving stripes of dead corals like ribbons of death in its wake. In a new study published by PLoS Biology, John Bruno, Amy Melendy, and colleagues show that the interaction between anomalously high ocean temperatures and the extent of coral cover is likely to account for the occurrence of the disease.

Global warming has seemed a likely suspect for several reasons. Past epidemiological studies—across a broad range of life forms—have shown that stress, including the stress of changing environmental conditions, often increases disease susceptibility. As temperatures rise, pathogens can reproduce more quickly. The fact that coral diseases seem to spread faster in summer also provides support for the notion that warmer temperatures may be involved. The authors conducted a regional-scale longitudinal study of the hypothesized link between warm temperature deviations and the presence of white syndrome, considering the density of coral cover as an additional variable of interest. To quantify temperature fluctuations, the researchers used a high resolution dataset on ocean surface temperature provided by the United States National Oceanic and Atmospheric Association and the University of Miami. They used the dataset to calculate w eekly sea surface temperature anomalies (WSSTAs), instances in which temperature was higher by 1°C or more from mean records for that week, for 48 reefs within the Great Barrier Reef. To evaluate the extent of white syndrome and coral cover, the researchers used data collected by the Australian Institute of Marine Science Long-term Monitoring Program on 48 reefs from a 1,500-kilometer stretch of the Great Barrier Reef from 1998 to 2004 at a depth of six to nine meters. Divers counted the number of infected colonies on each reef. Coral cover, the amount of the bottom with living corals, was measured from videos taken of the reefs.

The researchers then evaluated the relationship between the occurrence of white syndrome and three variables: number of WSSTAs occurring during the previous 52 weeks, coral cover, and the interaction between the two. They found that the third variable showed a statistically significant correlation with number of white syndrome cases, indicating that the presence of both conditions (temperature anomalies and high coral cover) creates the conditions in which white syndrome outbreaks are most likely to occur. In other words, WSSTAs were a necessary but not sufficient condition for white syndrome outbreaks, whereas the combination of heat stress and a dense colony was deadly.

What does this mean for corals and the ecosystem they support? If global warming increases the incidence of warm temperature anomalies in tropical oceans the years ahead, these results suggest that corals in high-cover areas will be increasingly vulnerable to white disease. If the effect is large enough, the tightly woven web of life within coral reefs could begin to unravel, potentially transforming habitats that were once among the planet’s richest ecosystems into underwater wastelands. This strong evidence for a link among a warming ocean, coral density, and white syndrome provides a rich foundation for further work to understand the spread of coral disease in the Great Barrier Reef. It also provides valuable insights into marine epidemiology that could be of much value in investigating and potentially mitigating other devastating global warming-related disease outbreaks in the world’s vast and vulnerable oceans.

Citation: Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, et al. (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5(6): e124. doi:10.1371/journal.pbio.0050124.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050124

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>