Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to Track Impact of Asian Dust and Pollution on Clouds, Weather, Climate Change

20.04.2007
Scientists using the nation's newest and most capable aircraft for environmental research are launching a far-reaching field project this month to study plumes of airborne dust and pollutants that originate in Asia and journey to North America. The plumes are among the largest such events on Earth, so great in scope that scientists believe they might affect clouds and weather across thousands of miles while playing a role in global climate.

The PACDEX (Pacific Dust Experiment) project will be led by scientists at the National Center for Atmospheric Research and Scripps Institution of Oceanography. NCAR's main sponsor, the National Science Foundation (NSF), will provide most of the funding. The first mission will be launched in late April, with the exact start date dependent on weather patterns in Asia. The project will continue for almost two months.


This illustration shows a hypothetical plume and possible series of flight patterns during the PACDEX field project. When a major plume of dust and pollutants begins blowing off Asia, the G-V would fly from Boulder to Anchorage, where it would refuel, and then fly on to Yokota Air Base, Japan. It would then conduct a series of flights for about a week in and around the plume as the plume moves over the ocean to North America. (Illustration by Steve Deyo, ©UCAR.

"PACDEX will open a window into what happens to the atmosphere as these massive plumes cross the Pacific Ocean. The plumes affect clouds, precipitation, and the amount of sunlight that reaches Earth," explains NCAR scientist Jeff Stith, a principal investigator on the project. "We want to determine how the various particles of dust and pollutants in the plumes influence clouds and climate, and how far downwind those effects occur."

Impacts on climate change and weather

While many particles in the plumes, such as sulfates, cool the planet by blocking solar radiation from reaching Earth, other particles, such as black carbon, can have a warming effect. Black carbon produces warming by absorbing sunlight both at ground level, where the particles are deposited on snow cover, and in the air, where sunlight otherwise would have been reflected back into space.

Particles may mask up to half of the global warming impact of greenhouse gases. Warming in the coming decades will be strongly influenced by how particle emissions change, particularly in Asia.

The plumes can also alter global temperatures by interacting with large-scale, midlatitude cloud systems over the Pacific that reflect enormous amounts of sunlight and help regulate global climate. The plumes may affect regional precipitation patterns because water vapor molecules adhere to microscopic dust and pollution particles to form water droplets or ice particles that eventually grow and fall out of the clouds as rain or snow. In addition, the dust and pollutants reduce the amount of light reaching Earth, contributing to a phenomenon known as global dimming that can affect both temperatures and precipitation.

"PACDEX comes at a crucial time in our efforts to understand the regional impacts of global warming," says V. Ramanathan, a PACDEX principal investigator based at Scripps Institution of Oceanography. "It will also help us examine how the dust and soot modify storm tracks and cloud systems across the Pacific, which influence North American weather patterns in major ways. By focusing on these plumes, PACDEX will shed light on one of the major environmental issues of this decade."

Japan to North America

As Asia's economies boom, scientists are increasingly turning their attention to the plumes, which pack a combination of industrial emissions (including soot, smog, and trace metals) and dust. The plumes are lofted by storms that originate in regions such as Central Asia's Gobi Desert.

To study changes in the plumes as they move through the atmosphere from Japan to the western United States, the PACDEX team will deploy the NSF/NCAR Gulfstream-V aircraft. This newly configured jet has a range of about 6,000 miles and can cruise at altitudes from just a few hundred feet above Earth's surface to over 50,000 feet, enabling scientists to study the plumes across thousands of miles and at different levels of the atmosphere. The Gulfstream-V will carry an array of instruments that will enable scientists to both collect data on clouds and to bring dust, pollutants, and cloud particles into the aircraft for study.

In addition to NCAR and Scripps, the international research team will include scientists from North American and Asian institutions. North American participants include NASA; NOAA; the Naval Research Laboratory; the universities of Alaska, Colorado, and Iowa; Arizona State, Colorado State, and Oregon State universities; and the National Autonomous University of Mexico. Asian participants include the Japanese National Institute for Environmental Studies, Lanzhou University and Peking University in China, and Seoul National University in South Korea.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>