Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists to Track Impact of Asian Dust and Pollution on Clouds, Weather, Climate Change

Scientists using the nation's newest and most capable aircraft for environmental research are launching a far-reaching field project this month to study plumes of airborne dust and pollutants that originate in Asia and journey to North America. The plumes are among the largest such events on Earth, so great in scope that scientists believe they might affect clouds and weather across thousands of miles while playing a role in global climate.

The PACDEX (Pacific Dust Experiment) project will be led by scientists at the National Center for Atmospheric Research and Scripps Institution of Oceanography. NCAR's main sponsor, the National Science Foundation (NSF), will provide most of the funding. The first mission will be launched in late April, with the exact start date dependent on weather patterns in Asia. The project will continue for almost two months.

This illustration shows a hypothetical plume and possible series of flight patterns during the PACDEX field project. When a major plume of dust and pollutants begins blowing off Asia, the G-V would fly from Boulder to Anchorage, where it would refuel, and then fly on to Yokota Air Base, Japan. It would then conduct a series of flights for about a week in and around the plume as the plume moves over the ocean to North America. (Illustration by Steve Deyo, ©UCAR.

"PACDEX will open a window into what happens to the atmosphere as these massive plumes cross the Pacific Ocean. The plumes affect clouds, precipitation, and the amount of sunlight that reaches Earth," explains NCAR scientist Jeff Stith, a principal investigator on the project. "We want to determine how the various particles of dust and pollutants in the plumes influence clouds and climate, and how far downwind those effects occur."

Impacts on climate change and weather

While many particles in the plumes, such as sulfates, cool the planet by blocking solar radiation from reaching Earth, other particles, such as black carbon, can have a warming effect. Black carbon produces warming by absorbing sunlight both at ground level, where the particles are deposited on snow cover, and in the air, where sunlight otherwise would have been reflected back into space.

Particles may mask up to half of the global warming impact of greenhouse gases. Warming in the coming decades will be strongly influenced by how particle emissions change, particularly in Asia.

The plumes can also alter global temperatures by interacting with large-scale, midlatitude cloud systems over the Pacific that reflect enormous amounts of sunlight and help regulate global climate. The plumes may affect regional precipitation patterns because water vapor molecules adhere to microscopic dust and pollution particles to form water droplets or ice particles that eventually grow and fall out of the clouds as rain or snow. In addition, the dust and pollutants reduce the amount of light reaching Earth, contributing to a phenomenon known as global dimming that can affect both temperatures and precipitation.

"PACDEX comes at a crucial time in our efforts to understand the regional impacts of global warming," says V. Ramanathan, a PACDEX principal investigator based at Scripps Institution of Oceanography. "It will also help us examine how the dust and soot modify storm tracks and cloud systems across the Pacific, which influence North American weather patterns in major ways. By focusing on these plumes, PACDEX will shed light on one of the major environmental issues of this decade."

Japan to North America

As Asia's economies boom, scientists are increasingly turning their attention to the plumes, which pack a combination of industrial emissions (including soot, smog, and trace metals) and dust. The plumes are lofted by storms that originate in regions such as Central Asia's Gobi Desert.

To study changes in the plumes as they move through the atmosphere from Japan to the western United States, the PACDEX team will deploy the NSF/NCAR Gulfstream-V aircraft. This newly configured jet has a range of about 6,000 miles and can cruise at altitudes from just a few hundred feet above Earth's surface to over 50,000 feet, enabling scientists to study the plumes across thousands of miles and at different levels of the atmosphere. The Gulfstream-V will carry an array of instruments that will enable scientists to both collect data on clouds and to bring dust, pollutants, and cloud particles into the aircraft for study.

In addition to NCAR and Scripps, the international research team will include scientists from North American and Asian institutions. North American participants include NASA; NOAA; the Naval Research Laboratory; the universities of Alaska, Colorado, and Iowa; Arizona State, Colorado State, and Oregon State universities; and the National Autonomous University of Mexico. Asian participants include the Japanese National Institute for Environmental Studies, Lanzhou University and Peking University in China, and Seoul National University in South Korea.

David Hosansky | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>