Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much water, fertilizer bad for plant diversity

28.03.2007
Study shows that polluted ecosystems support a limited number of species

Too much of multiple good things – water or nutrients, for example – may decrease the diversity of plant life in an ecosystem while increasing the productivity of a few species, a UC Irvine scientist has discovered.

This finding provides a new explanation for why grasslands, lakes and rivers polluted with nitrogen and phosphorus, usually from agriculture, contain a limited number of plant species. For example, where the Mississippi River empties into the Gulf of Mexico, the water contains low levels of oxygen and high levels of nitrogen and phosphorus used in fertilizers resulting in reduced plant diversity.

“Our results show nutrient pollution can cause loss of plant species from a habitat that can persist for more than 100 years,” said W. Stanley Harpole, postdoctoral researcher in ecology and evolutionary biology at UCI and first author of the study. “This means human actions that simplify habitats can lead to long-term loss of biodiversity.”

This study appeared March 25 in the online edition of the journal Nature.

The findings are based on experiments conducted at the University of California’s Sedgwick Reserve in the Santa Ynez Valley. Researchers applied combinations of water and nutrients – including nitrogen, phosphorus and cations – to plots of grassland and found that areas treated with all of the resources had the fewest number of species but the highest productivity of a select few plant types.

When the many resources that plants compete for become overly abundant, the environment simplifies, and an emphasis is placed on a single environmental factor such as space or sunlight. Only a few species best adapted to the new environmental conditions will thrive, Harpole said.

The experiment, combined with an analysis of a similar 150-year-old study, supports the scientists’ theory that plant diversity is directly related to the number of limiting factors such as levels of nitrogen, phosphorus, potassium and water.

G. David Tilman, professor of ecology at the University of Minnesota, collaborated with Harpole on this research. The study was supported by the Andrew W. Mellon Foundation.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 25,000 undergraduate and graduate students and about 1,800 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.7 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>