Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution shown cutting rainfall in hilly areas

09.03.2007
Manmade climate change due to pollution seriously inhibits precipitation over hills in semi-arid regions, a phenomenon with dire consequences for water resources in the Middle east and many other parts of the world, a study by a Chinese-Israeli research team, led by Prof. Daniel Rosenfeld of the Hebrew University of Jerusalem, has shown.

The Chinese and Israeli researchers showed that the average precipitation on Mount Hua near Xian in central China has decreased by 20 percent along with increasing levels of manmade air pollution during the last 50 years. The precipitation loss was doubled on days that had the poorest visibility due to pollution particles in the air.

This explains the widely observed trends of decrease in mountain precipitation relative to the rainfall in nearby densely populated lowlands, which until now had not been directly ascribed to air pollution.

The research study, published in the current issue of the journal Science, is titled “Inverse Relations between Amounts of Air Pollution and Orographic Precipitation” and was written by Prof. Rosenfeld of the Hebrew University’s Ring Department of Atmospheric Sciences, Jin Dai and others from the Meteorological Institute of Shaanxi Province, China, and Zhanyu Yao of the Chinese Academy of Meteorological Science.

These findings highlight the threat to vital water resources in polluted regions of the world where hilly-area precipitation makes a significant contribution to the regional water supply, as in the southwestern U.S. central and northern China, and the Middle East. The importance of that is underlined by the realization that it is not high temperatures due to global warming but rather the lack of water that makes a region into an unlivable desert.

The authors studied observations of precipitation and visibility starting in 1954 at the top of Mount Hua. They linked the decreasing visibility at its over two-kilometer-high summit with increasing air pollution particles that reach to the clouds. They were able to show that the trend of higher concentrations of these fine, airborne, pollutants (aerosols) is responsible for the observed decreasing trend of mountain precipitation. This is the first time that this link has been demonstrated so conclusively.

The precipitation inhibition process occurs as water vapor condenses on the pollution particles and creates a cloud with a large number of drops that are so small that they float with the air and are slow to coalesce into raindrops or to freeze into sleet and snowflakes. This slowing translates into a net loss of precipitation when the cloud “lifetime” is shorter than the time necessary to release its water. This is the case for clouds that form when they ascend across a ridge and then descend and evaporate on the downwind side.

By making use of precipitation and visibility records that show a direct causal link between the airborne particle pollution and the mountain precipitation losses, the unique China study can serve as a template to bear out hypotheses about the effects of pollution on rainfall that were undertaken previously by Prof. Rosenfeld in hilly regions with similar pollutive conditions. These include California and much of the western United States. Similar trends were already published also for Israel, and observed in South Africa, Portugal, France, Switzerland, Morocco, Canada, Greece and Spain.

Atmospheric aerosols have been described in earlier studies as playing a role in cooling the atmosphere by reflecting some of the incoming solar radiation back into space -- thus serving as a counterbalance to global warming resulting from the release of greenhouse gases. The latest study by Prof. Rosenfeld and his Chinese associates shows, however, that this “beneficial” effect is offset by the proven direct link between air pollution and decreased mountain precipitation, and that climate change means much more than “just” global warming.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>