Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution shown cutting rainfall in hilly areas

09.03.2007
Manmade climate change due to pollution seriously inhibits precipitation over hills in semi-arid regions, a phenomenon with dire consequences for water resources in the Middle east and many other parts of the world, a study by a Chinese-Israeli research team, led by Prof. Daniel Rosenfeld of the Hebrew University of Jerusalem, has shown.

The Chinese and Israeli researchers showed that the average precipitation on Mount Hua near Xian in central China has decreased by 20 percent along with increasing levels of manmade air pollution during the last 50 years. The precipitation loss was doubled on days that had the poorest visibility due to pollution particles in the air.

This explains the widely observed trends of decrease in mountain precipitation relative to the rainfall in nearby densely populated lowlands, which until now had not been directly ascribed to air pollution.

The research study, published in the current issue of the journal Science, is titled “Inverse Relations between Amounts of Air Pollution and Orographic Precipitation” and was written by Prof. Rosenfeld of the Hebrew University’s Ring Department of Atmospheric Sciences, Jin Dai and others from the Meteorological Institute of Shaanxi Province, China, and Zhanyu Yao of the Chinese Academy of Meteorological Science.

These findings highlight the threat to vital water resources in polluted regions of the world where hilly-area precipitation makes a significant contribution to the regional water supply, as in the southwestern U.S. central and northern China, and the Middle East. The importance of that is underlined by the realization that it is not high temperatures due to global warming but rather the lack of water that makes a region into an unlivable desert.

The authors studied observations of precipitation and visibility starting in 1954 at the top of Mount Hua. They linked the decreasing visibility at its over two-kilometer-high summit with increasing air pollution particles that reach to the clouds. They were able to show that the trend of higher concentrations of these fine, airborne, pollutants (aerosols) is responsible for the observed decreasing trend of mountain precipitation. This is the first time that this link has been demonstrated so conclusively.

The precipitation inhibition process occurs as water vapor condenses on the pollution particles and creates a cloud with a large number of drops that are so small that they float with the air and are slow to coalesce into raindrops or to freeze into sleet and snowflakes. This slowing translates into a net loss of precipitation when the cloud “lifetime” is shorter than the time necessary to release its water. This is the case for clouds that form when they ascend across a ridge and then descend and evaporate on the downwind side.

By making use of precipitation and visibility records that show a direct causal link between the airborne particle pollution and the mountain precipitation losses, the unique China study can serve as a template to bear out hypotheses about the effects of pollution on rainfall that were undertaken previously by Prof. Rosenfeld in hilly regions with similar pollutive conditions. These include California and much of the western United States. Similar trends were already published also for Israel, and observed in South Africa, Portugal, France, Switzerland, Morocco, Canada, Greece and Spain.

Atmospheric aerosols have been described in earlier studies as playing a role in cooling the atmosphere by reflecting some of the incoming solar radiation back into space -- thus serving as a counterbalance to global warming resulting from the release of greenhouse gases. The latest study by Prof. Rosenfeld and his Chinese associates shows, however, that this “beneficial” effect is offset by the proven direct link between air pollution and decreased mountain precipitation, and that climate change means much more than “just” global warming.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>