Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea level on the rise – in real and virtual worlds

06.02.2007
The climate system, and in particular sea level, may be responding more quickly to rising carbon emissions than climate scientists have estimated with climate models.

An international team of climate scientists has cautioned against suggestions that the Intergovernmental Panel on Climate Change (IPCC) has previously overestimated the rate of climate change.

The team, from six institutions around the world, reviewed actual observations of carbon dioxide, temperature and sea level from 1990 to 2006 and compared them with projected changes for the same period.

In a review published in the journal Science today, the authors found that carbon dioxide concentration followed the modelled scenarios almost exactly, that global-mean surface temperatures were in the upper part of the range projected by the IPCC, and that observed sea level has been rising faster than the models had projected and closely followed the IPCC Third Assessment Report upper limit of an 88 cm rise between 1990 and 2100.

“Models of the potential contribution of the Greenland and Antarctic ice sheets need to be improved to include the potential of a relatively dynamic response,”

Dr Church said.The scientists noted that because the review period (1990-2006) was short, it would be premature to conclude that sea levels will continue to increase at the same rate in the future. However, they also said their findings show that previous projections have not exaggerated the rate of change but may in some respects have underestimated it.

Measurements of carbon dioxide through facilities such as the Australian Bureau of Meteorology’s Cape Grim observatory in Tasmania support the paper’s conclusions. The global average temperature estimates are collated separately by NASA’s Goddard Institute for Space Studies in the USA and the Hadley Centre and Climatic Research Unit in the UK. The sea level observations come from both coastal and island tide gauges and data provided by satellites.

Sea levels have risen largely due to warming of the ocean and the consequent thermal expansion and melting of non-polar glaciers and ice caps and the ice sheets of Antarctica and Greenland.

One of the authors of the review, Dr John Church of the Antarctic Climate & Ecosystems CRC and CSIRO, noted that any (or all) of the modelled contributions could be underestimated but that there is most uncertainty about the contribution made by ice-sheet melts. “Models of the potential contribution of the Greenland and Antarctic ice sheets need to be improved to include the potential of a relatively dynamic response,” Dr Church said. This work is a component of the Wealth from Oceans Flagship, an initiative of CSIRO to more broadly understand the impact of marine climate change.

Lead author of the review was Dr Stefan Ramstorf, of the Potsdam Institute for Climate Impact Research, Potsdam, Germany; with contributing authors: Dr Anny Cazenave, Toulouse France; Dr John Church, Antarctic Climate and Ecosystem CRC and CSIRO; Dr James Hansen at NASA Goddard Institute for Space Studies, USA; Drs Ralph E. Keeling and Richard C.J. Somerville, Scripps Institution of Oceanography, UCSD, USA; and, Dr David E. Parker, Hadley Centre, Met Office, UK.

Craig Macaulay | EurekAlert!
Further information:
http://www.csiro.au/csiro/content/standard/ps2q2.html

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>