Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants point the way to coping with climate change

10.01.2007
Roses flowering at Christmas and snow-free ski resorts this winter suggest that climate change is already with us and our farmers and growers will need ways of adapting. Scientists funded by two Swindon-based Research Councils are studying how plants have naturally evolved to cope with the changing seasons of temperate climates and have made a discovery that could help us to breed new varieties of crops, able to thrive in a changing climate.

The importance of the discovery is that it reveals how a species has developed different responses to different climates in a short period of time.


Plant in Snow

Researchers at the John Innes Centre (JIC) have been examining how plants use the cold of winter to time their flowering for the relative warmth of spring. This process, called vernalization, varies even within the same plant species, depending on local climate. In Scandinavia, where winter temperatures can vary widely, the model plant, Arabidopsis has a slow vernalization response to prevent plants from being 'fooled' into flowering by a short mid-winter thaw.

One particular gene, named FLC, delays flowering over the winter and the research team discovered how cold turns off FLC and what keeps it off during growth in spring. In the UK plants only need four weeks of cold to stably inactivate FLC, allowing plants to start their spring flowering early. Arabidopsis plants in Sweden have a mechanism that requires 14 straight weeks of winter cold before FLC is stably inactivated. This prevents the plants flowering only to be hit with another month of harsh winter weather.

Research leader at JIC, Professor Caroline Dean, explains: "We studied levels of the FLC gene in Arabidopsis plants from different parts of the world expecting to find regional variations that correlated with how much cold was required to switch FLC off. We discovered that FLC levels in autumn and the rate of reduction during the early phases of cold were quite similar in Arabidopsis plants from Edinburgh and N. Scandinavia . However, we found big variations in how much cold was required to achieve stable inactivation of FLC. FLC was stably silenced much faster in Edinburgh than it was in N. Scandinavia and a genetic analysis showed that differences in the FLC gene itself contributed to this variation.

Professor Dean said: "It looks like the variation in this mechanism to adapt the timing of flowering to different winter conditions has evolved extremely quickly. We hope that by understanding how plants have adapted to different climates it will give us a head-start in breeding crops able to cope with global warming."

The JIC scientists worked in collaboration with a team at the University of Southern California and were funded by the UK's main public funders of biological and environmental sciences, the Biotechnology and Biological Sciences Research Council (BBSRC) and the Natural Environment Research Council.

Professor Julia Goodfellow, BBSRC Chief Executive, commented: "As well as working to prevent climate change we need to be able to harness natural methods to adapt food crops to cope with changed and hostile climates around the world. This is an example of how basic science can make a practical difference."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>