Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants point the way to coping with climate change

10.01.2007
Roses flowering at Christmas and snow-free ski resorts this winter suggest that climate change is already with us and our farmers and growers will need ways of adapting. Scientists funded by two Swindon-based Research Councils are studying how plants have naturally evolved to cope with the changing seasons of temperate climates and have made a discovery that could help us to breed new varieties of crops, able to thrive in a changing climate.

The importance of the discovery is that it reveals how a species has developed different responses to different climates in a short period of time.


Plant in Snow

Researchers at the John Innes Centre (JIC) have been examining how plants use the cold of winter to time their flowering for the relative warmth of spring. This process, called vernalization, varies even within the same plant species, depending on local climate. In Scandinavia, where winter temperatures can vary widely, the model plant, Arabidopsis has a slow vernalization response to prevent plants from being 'fooled' into flowering by a short mid-winter thaw.

One particular gene, named FLC, delays flowering over the winter and the research team discovered how cold turns off FLC and what keeps it off during growth in spring. In the UK plants only need four weeks of cold to stably inactivate FLC, allowing plants to start their spring flowering early. Arabidopsis plants in Sweden have a mechanism that requires 14 straight weeks of winter cold before FLC is stably inactivated. This prevents the plants flowering only to be hit with another month of harsh winter weather.

Research leader at JIC, Professor Caroline Dean, explains: "We studied levels of the FLC gene in Arabidopsis plants from different parts of the world expecting to find regional variations that correlated with how much cold was required to switch FLC off. We discovered that FLC levels in autumn and the rate of reduction during the early phases of cold were quite similar in Arabidopsis plants from Edinburgh and N. Scandinavia . However, we found big variations in how much cold was required to achieve stable inactivation of FLC. FLC was stably silenced much faster in Edinburgh than it was in N. Scandinavia and a genetic analysis showed that differences in the FLC gene itself contributed to this variation.

Professor Dean said: "It looks like the variation in this mechanism to adapt the timing of flowering to different winter conditions has evolved extremely quickly. We hope that by understanding how plants have adapted to different climates it will give us a head-start in breeding crops able to cope with global warming."

The JIC scientists worked in collaboration with a team at the University of Southern California and were funded by the UK's main public funders of biological and environmental sciences, the Biotechnology and Biological Sciences Research Council (BBSRC) and the Natural Environment Research Council.

Professor Julia Goodfellow, BBSRC Chief Executive, commented: "As well as working to prevent climate change we need to be able to harness natural methods to adapt food crops to cope with changed and hostile climates around the world. This is an example of how basic science can make a practical difference."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>