Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assessing ecosystem services to identify conservation priorities

31.10.2006
Efforts to save wilderness often play out within a win-lose framework, pitting conservation against economic opportunity. But as human pressures on wild lands continue to escalate, conservation biologists are seeking win-win approaches based on the notion that ecosystems provide numerous economic benefits—wetlands mitigate flooding, for example—to a wide variety of beneficiaries.

By quantifying these ecosystem services and the “opportunity” costs of not developing habitat, planners can identify areas that provide important ecosystem services and determine who benefits from these services and who incurs costs. But quantifying costs and benefits and the flow of ecosystem services across a variable landscape is a daunting task. Thus far, it has not been clear to what degree traditional conservation plans for biodiversity also protect valuable ecosystem services. Taking complementary approaches to this problem, two new studies use spatially explicit models to incorporate ecosystem services into conservation planning.

In one study, Robin Naidoo and Taylor Ricketts weigh the economic value of five ecosystem services against the costs of conservation in the Atlantic forests of Paraguay. In the second study, Kai Chan, Rebecca Shaw, Gretchen Daily, and colleagues present a strategy for integrating ecosystem services into biodiversity conservation plans in California’s Central Coast ecoregion to systematically identify priorities for conservation.

Naidoo and Ricketts assessed five ecosystem services—sustainable bushmeat harvest, sustainable timber harvest, pharmaceutical bioprospecting, existence value (the intrinsic value of unspoiled wilderness), and carbon storage (forest conversion releases carbon dioxide)—provided by forests in the Mbaracayu Biosphere Reserve. The reserve, once covered by 90% forest but now highly fragmented and threatened beyond a protected core, supports large-scale cattle ranching, soybean production, and small-scale farming, along with hunting and foraging by the indigenous Ache. They showed that the costs and the benefits of forest conservation varied considerably across this relatively small landscape. Interestingly, bioprospecting, long invoked to justify conserving areas that could harbor potentially life-saving medicines, offered the smallest benefit. When only local (bioprospecting, bushmeat, timber) services were included in the analyses, just a few parcels passed the cost-benefit test for conservation. But when carbon values were added—“by far” the most valuable service on average per hectare—benefits exceeded opportunity costs for 98% of the forests. Demonstrating how this approach could guide conservation planning, the authors show that linking two large forest patches with one wildlife corridor would provide far greater net benefits than either of two alternative corridors.

Building on recent advances in the emerging field of ecosystem service conservation, Chan et al. present an analytical framework that integrates ecosystem services into the well-established methods of biodiversity planning. They mapped the intersection between areas that provide ecosystem services and those that support substantial biodiversity. By modeling the implications of conservation plans based on prioritizing various combinations of biodiversity and ecosystem services—identifying tradeoffs in some cases and synergies in others—they illustrate the importance of integrating both elements in conservation planning. The authors studied the California Central Coast ecoregion, covering north of San Francisco to Santa Barbara, where they had sufficient empirical and spatially explicit datasets for six ecosystem services provided by the 11,000-plus planning units in the region. They mapped terrestrial biodiversity and six services—carbon storage, flood control, forage (grazing) production, outdoor recreation, crop pollination, and water provision—across the region, and estimated each parcel’s provision of each service (following the same protocol used to plan biodiversity conservation) to develop conservation area networks for each service and biodiversity.

The spatial distribution of benefits from biodiversity and each of the six ecosystem services varied considerably across the ecoregion. Overall, spatial correlations between the ecosystem services were low (aside from a few high correlations, such as between carbon storage and water provision), as was the correlation between biodiversity and the other services. However, when biodiversity networks were considered as a whole, they found that “impressive supplies of ecosystem services” would be protected. Plans that prioritized networks based on ecosystem services protected slightly higher levels of services, but lower levels of biodiversity. These results reveal important potential tradeoffs between conservation for biodiversity versus ecosystem services, underscoring the need for a systematic conservation planning framework that strategically targets the unique complement of features in a given region.

Understanding the degree of overlap between lands that provide important ecosystem services as well as biodiversity, Chan et al. argue, will not only reveal hotspots for conservation, but also suggest new partners for ecosystem protection. It also provides an opportunity to build common ground between wilderness advocates and landowners to develop conservation initiatives with multiple winners. By the time hurricane Katrina hit, Louisiana had lost 405,000 hectares of wetlands, offering a bitter lesson on wetlands flood protection. Now, a growing list of industries sees wetlands restoration as the key to economic recovery in the area.

Together, these two studies contribute valuable analytical frameworks to the nascent field of studying and planning for ecosystem services. And by systematically identifying tradeoffs and opportunities for aligning plans to protect biodiversity with those to conserve the flow of services from an ecosystem, they provide policymakers with a decision-making framework to identify conservation hotspots and maximize the allocation of scarce conservation dollars.

Citation: Naidoo R, Ricketts TH (2006) Mapping the economic costs and benefits of conservation. PLoS Biol 4(11): e360. DOI: 10.1371/journal.pbio.0040360.

Citation: Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conservation planning for ecosystem services. 4(11): e379. DOI: 10.1371/journal.pbio.0040379.

Andrew Hyde | alfa
Further information:
http://www.plos.org/
http://www.plosbiology.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>