Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecosystem of vanishing lake yields valuable bacterium

19.10.2006
In the salt flats near a slowly vanishing lake, a team of researchers have found never-before-seen bacterium that could clean up some of humanity's pollution.

In three scientific papers currently being written, Brent Peyton, a Montana State University chemical engineering professor, his students, and collaborators are describing the unique qualities of Halomonas campisalis, a bacterium Peyton discovered in 1995 near Soap Lake, Wash.

At the time of discovery, Peyton worked for the Pacific Northwest National Laboratory (PNNL) in Richland, Wash., one of nine U.S. Department of Energy labs. The laboratory wanted to develop a treatment to remove nitrate contaminants from alkaline and saline radioactive wastewater. Such a treatment could also be used to clean-up wastewater from fertilizer and explosive manufacturing plants, which is 10 to 15-times saltier than the ocean and laden with polluting nitrates.

Peyton hoped the salty ecosystem of Soap Lake might be home to a bacterium that could live in such high-salt waters and also find nitrates appetizing.

Soap Lake is one of only 11 known meromictic lakes in the United States. The water in meromictic lakes separates into layers of differing mineral concentrations. The upper layer of Soap Lake is a little less than half the saltiness of the ocean, but more than 100-times saltier than river water. The bottom layer is more than twice as salty as the ocean and more than 700-times saltier than river water. These two layers are thought to have remained unmixed in any significant way for the past 2,000 to 10,000 years. The conditions of Soap Lake are considered so extraordinary the National Science Foundation designated it a "microbial observatory."

Near Soap Lake are salt flats. Water seeping through these flats finds its way into the lake, carrying salt with it. It was in these flats Peyton collected some mud in 1995.

In the lab, he tried to make something grow and something did: the bacterium he would later name Halomonas campisalis. The last part of the name translates from Latin into "salt flats."

Making its home in super-salty water, Halomonas campisalis eats nitrates for breakfast, dinner and lunch. When it's digested its meal, it gives off nitrogen as waste. In the grand scheme of things, nitrogen is pretty harmless. About 80 percent of the air we breathe is nitrogen.

The bacterium was perfect for the treatment of salty, nitrate-bearing wastewater, as well as wastewater from the production of explosives and fertilizers.

"You could pour that salty wastewater in a tank with Halomonas campisalis, add sugar or vinegar for food and let it perk away to create nitrogen," Peyton said.

It might sound simple, but it's taken years of painstaking laboratory work to grow, identify, and characterize all the unique capabilities of Halomonas campisalis. It could take years more for the bacterium to be turned into an industrial process, something Peyton hopes a company will attempt in the future.

His work has been done in close collaboration with microbiologists Melanie Mormile from the University of Missouri - Rolla in Rolla, Mo., and Holly Pinkart, from Central Washington University in Ellensburg, Wash.

Since first walking in Soap Lake's mud, Peyton's career and his Soap Lake research have taken him from five years at PNNL to eight years at Washington State University in Pullman, Wash., and then to MSU in August 2005. It was a homecoming of sorts: Peyton received his Ph.D. in chemical engineering from MSU in 1992.

During that time, Soap Lake has continued on a course that may lead to its disappearance.

"Many unique and undiscovered organisms have evolved in the extraordinary saltiness of the Soap Lake ecosystem," Peyton said. "But the lake's saltiness is being diluted, likely because of a major irrigation project built in the 1950s. It is already 60 percent less salty than 50 years ago. In another 50 years, Soap Lake as we know it - and the unique life it harbors - may not exist."

Contact: Brent Peyton, (406) 994-7419 or bpeyton@coe.montana.edu

Brent Peyton | EurekAlert!
Further information:
http://www.coe.montana.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>