Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ecosystem of vanishing lake yields valuable bacterium

In the salt flats near a slowly vanishing lake, a team of researchers have found never-before-seen bacterium that could clean up some of humanity's pollution.

In three scientific papers currently being written, Brent Peyton, a Montana State University chemical engineering professor, his students, and collaborators are describing the unique qualities of Halomonas campisalis, a bacterium Peyton discovered in 1995 near Soap Lake, Wash.

At the time of discovery, Peyton worked for the Pacific Northwest National Laboratory (PNNL) in Richland, Wash., one of nine U.S. Department of Energy labs. The laboratory wanted to develop a treatment to remove nitrate contaminants from alkaline and saline radioactive wastewater. Such a treatment could also be used to clean-up wastewater from fertilizer and explosive manufacturing plants, which is 10 to 15-times saltier than the ocean and laden with polluting nitrates.

Peyton hoped the salty ecosystem of Soap Lake might be home to a bacterium that could live in such high-salt waters and also find nitrates appetizing.

Soap Lake is one of only 11 known meromictic lakes in the United States. The water in meromictic lakes separates into layers of differing mineral concentrations. The upper layer of Soap Lake is a little less than half the saltiness of the ocean, but more than 100-times saltier than river water. The bottom layer is more than twice as salty as the ocean and more than 700-times saltier than river water. These two layers are thought to have remained unmixed in any significant way for the past 2,000 to 10,000 years. The conditions of Soap Lake are considered so extraordinary the National Science Foundation designated it a "microbial observatory."

Near Soap Lake are salt flats. Water seeping through these flats finds its way into the lake, carrying salt with it. It was in these flats Peyton collected some mud in 1995.

In the lab, he tried to make something grow and something did: the bacterium he would later name Halomonas campisalis. The last part of the name translates from Latin into "salt flats."

Making its home in super-salty water, Halomonas campisalis eats nitrates for breakfast, dinner and lunch. When it's digested its meal, it gives off nitrogen as waste. In the grand scheme of things, nitrogen is pretty harmless. About 80 percent of the air we breathe is nitrogen.

The bacterium was perfect for the treatment of salty, nitrate-bearing wastewater, as well as wastewater from the production of explosives and fertilizers.

"You could pour that salty wastewater in a tank with Halomonas campisalis, add sugar or vinegar for food and let it perk away to create nitrogen," Peyton said.

It might sound simple, but it's taken years of painstaking laboratory work to grow, identify, and characterize all the unique capabilities of Halomonas campisalis. It could take years more for the bacterium to be turned into an industrial process, something Peyton hopes a company will attempt in the future.

His work has been done in close collaboration with microbiologists Melanie Mormile from the University of Missouri - Rolla in Rolla, Mo., and Holly Pinkart, from Central Washington University in Ellensburg, Wash.

Since first walking in Soap Lake's mud, Peyton's career and his Soap Lake research have taken him from five years at PNNL to eight years at Washington State University in Pullman, Wash., and then to MSU in August 2005. It was a homecoming of sorts: Peyton received his Ph.D. in chemical engineering from MSU in 1992.

During that time, Soap Lake has continued on a course that may lead to its disappearance.

"Many unique and undiscovered organisms have evolved in the extraordinary saltiness of the Soap Lake ecosystem," Peyton said. "But the lake's saltiness is being diluted, likely because of a major irrigation project built in the 1950s. It is already 60 percent less salty than 50 years ago. In another 50 years, Soap Lake as we know it - and the unique life it harbors - may not exist."

Contact: Brent Peyton, (406) 994-7419 or

Brent Peyton | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>