Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising temperatures will lead to loss of trout habitat in the southern Appalachians

06.10.2006
USDA Forest Service (FS) research projects that between 53 and 97 percent of natural trout populations in the Southern Appalachians could disappear due to the warmer temperatures predicted under two different global climate circulation models.

In an article published October 2 in the online version of the Transactions of the American Fisheries Society, Patricia Flebbe, research biologist at the FS Southern Research Station unit in Blacksburg, VA, maps out trout habitat in a future, warmer climate.

The three species of trout that live in the Southern Appalachians--native brook and the introduced rainbow and brown trout --all require relatively low stream temperatures to survive. Average air temperature in the United States has increased by about 0.6º C (1o F) over the last 100 years, and is projected to increase 3 to 5ºC (5.4 to 9o F) over the next century, causing a corresponding warming of stream temperatures.

"Trout species in the Southern Appalachians are already at the southern limits of their ranges," says Flebbe. "If temperatures warm as much as predicted, trout habitat in the region will definitely shrink."

To estimate trout habitat in relation to higher temperatures, Flebbe and fellow researchers Laura Roghair from the Virginia Tech Conservation Management Institute and former FS employee Jennifer Bruggink produced a regional map of wild trout habitat based on information from stream samples, expert knowledge, and suitable land cover. They then developed a model that uses elevation and latitude as surrogates for temperature, producing spatially explicit information about how much trout habitat will be left as temperatures rise over the next 100 years.

"Estimates of how much temperature will increase in the Southern Appalachians varies according to the global circulation models used, which, in turn, affects projections of habitat loss," says Flebbe. "Using predictions from the Hadley Centre, about 53 percent of trout habitat would be lost over the next century. Under the more extreme model from the Canadian Centre, 97 percent would be lost."

Trout habitat in the Southern Appalachians is already fragmented due to land use change, road building, channelization, and other disturbances. Under both temperature change scenarios, this fragmentation would increase. "As the remaining habitat for trout becomes more fragmented, only small refuges in headwater streams at the highest levels will remain," says Flebbe. "Small populations in isolated patches can be easily lost, and in a warmer climate, could simply die out."

"Although all three of these trout species will probably remain viable in other parts of their range, the world could lose the brook trout strain unique to the region," she adds. "And, as a result, trout fishing in the Southern Appalachians may become a heavily managed experience."

Patricia Flebbe | EurekAlert!
Further information:
http://www.srs.fs.usda.gov/pubs/24607
http://www.srs.fs.usda.gov/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>