Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising temperatures will lead to loss of trout habitat in the southern Appalachians

06.10.2006
USDA Forest Service (FS) research projects that between 53 and 97 percent of natural trout populations in the Southern Appalachians could disappear due to the warmer temperatures predicted under two different global climate circulation models.

In an article published October 2 in the online version of the Transactions of the American Fisheries Society, Patricia Flebbe, research biologist at the FS Southern Research Station unit in Blacksburg, VA, maps out trout habitat in a future, warmer climate.

The three species of trout that live in the Southern Appalachians--native brook and the introduced rainbow and brown trout --all require relatively low stream temperatures to survive. Average air temperature in the United States has increased by about 0.6º C (1o F) over the last 100 years, and is projected to increase 3 to 5ºC (5.4 to 9o F) over the next century, causing a corresponding warming of stream temperatures.

"Trout species in the Southern Appalachians are already at the southern limits of their ranges," says Flebbe. "If temperatures warm as much as predicted, trout habitat in the region will definitely shrink."

To estimate trout habitat in relation to higher temperatures, Flebbe and fellow researchers Laura Roghair from the Virginia Tech Conservation Management Institute and former FS employee Jennifer Bruggink produced a regional map of wild trout habitat based on information from stream samples, expert knowledge, and suitable land cover. They then developed a model that uses elevation and latitude as surrogates for temperature, producing spatially explicit information about how much trout habitat will be left as temperatures rise over the next 100 years.

"Estimates of how much temperature will increase in the Southern Appalachians varies according to the global circulation models used, which, in turn, affects projections of habitat loss," says Flebbe. "Using predictions from the Hadley Centre, about 53 percent of trout habitat would be lost over the next century. Under the more extreme model from the Canadian Centre, 97 percent would be lost."

Trout habitat in the Southern Appalachians is already fragmented due to land use change, road building, channelization, and other disturbances. Under both temperature change scenarios, this fragmentation would increase. "As the remaining habitat for trout becomes more fragmented, only small refuges in headwater streams at the highest levels will remain," says Flebbe. "Small populations in isolated patches can be easily lost, and in a warmer climate, could simply die out."

"Although all three of these trout species will probably remain viable in other parts of their range, the world could lose the brook trout strain unique to the region," she adds. "And, as a result, trout fishing in the Southern Appalachians may become a heavily managed experience."

Patricia Flebbe | EurekAlert!
Further information:
http://www.srs.fs.usda.gov/pubs/24607
http://www.srs.fs.usda.gov/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>