Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCD researchers a step closer to finding a new way to reduce greenhouse gas emissions

05.10.2006
Greenhouse gas emissions are widely believed to contribute to climate change and global warming. Under the Kyoto Protocol Ireland agreed to reduce its greenhouse gas emissions to 13% above the 1990 levels by 2008 to 2012.

However, the EPA reported that emissions in 2004 were 23% above the 1990 levels, indicating that Ireland is a long way from meeting the target.

The most important greenhouse gas is carbon dioxide which is released into the atmosphere when fossil fuels are burned to provide power and heat for industries, transportation, homes and businesses. One way to reduce emissions is to capture carbon dioxide from the exhaust streams of industrial processes or cars before it is released into the atmosphere.

A new technology is being developed by Centre for Synthesis and Chemical Biology (CSCB) researchers, Professor Don MacElroy and Dr Damian Mooney from the UCD School of Chemical and Bioprocess Engineering and Dr Matthias Tacke and his research group from the UCD School of Chemistry and Chemical Biology, which aims to capture carbon dioxide from exhaust streams. This inorganic membrane technology must be capable of separating and capturing carbon dioxide after combustion.

"To date no membranes have been developed to separate carbon dioxide at temperatures of greater than 400°C from combustion or other high temperature process gases," explains Professor MacElroy. "Our preliminary results show that ultra-thin nanoporous membranes can separate carbon dioxide from nitrogen at 600°C."

It is essential to separate carbon dioxide from other gases to facilitate economic storage after capture.

"The separation technique works on the basis of molecular size. The difficulty with separating carbon dioxide from nitrogen lies in the dimensions of the atoms within the molecules," says Professor MacElroy. "There is about 10% difference in size between them so it was a challenge for us to develop a membrane that is selective for carbon dioxide over nitrogen."

Research work carried out by Dr Laurence Cuffe as part of his postdoctoral programme involved developing a composite membrane on Vycor glass. The pore size of Vycor glass is too large so it must be chemically modified by coating it with an inorganic nanomembrane.

"The modification to the surface of the Vycor results in the formation of nanoporous plugs which are permeable to carbon dioxide but form a barrier to nitrogen," continues Professor MacElroy.

The preliminary results showed that these membranes exhibit selectivities for carbon dioxide over nitrogen of more than 36:1 in one case and 75:1 in another case at a working temperature of 600°C. Professor MacElroy explained that the group is now looking at other processes of modifying the glass which are more versatile.

After carbon dioxide is captured, it must then be stored long term or recycled. Oceans and forests act as natural carbon dioxide reservoirs but underground caverns, old gas wells and saline aquifers are also used. Statoil, for example, has undertaken a commercial project of capturing carbon dioxide from the Sleipner gas field in the Norwegian North Sea and storing it 1000 meters under the sea bed in a saline aquifer.

Professor MacElroy concludes that "Carbon dioxide could be recycled by returning it to an artificial carbon cycle. It is a valuable commodity and under appropriate processing conditions there is the possibility of converting it into low molecular weight chemical commodities or recycling it into methanol. Recycling captured carbon dioxide could well be part of the quest for renewable energy sources."

The CSCB is a collaboration in the chemical sciences between University College Dublin (UCD), Trinity College Dublin (TCD) and the Royal College of Surgeons of Ireland (RCSI). The centre was established in Dublin in December 2001 after being awarded €26 million by the Irish Government's Higher Education Authority Programme for Research in Third Level Institutions (PRTLI).

Orla Donoghue | alfa
Further information:
http://www.ucd.ie/cscb/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>