Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record ozone loss during 2006 over South Pole

04.10.2006
Ozone measurements made by ESA’s Envisat satellite have revealed the ozone loss of 40 million tonnes on 2 October 2006 has exceeded the record ozone loss of about 39 million tonnes for 2000.

Ozone loss is derived by measuring the area and the depth of the ozone hole. The size of this year’s ozone hole is 28 million square km, nearly as large as the record ozone hole extension during 2000, and the depth of the ozone hole is around 100 Dobson Units, rivalling the record low ozone values in 1998. This year’s record ozone loss was reached because these two measurements occurred during the same time period. (A Dobson unit is a unit of measurement that describes the thickness of the ozone layer in a column directly above the location being measured.)

"Such significant ozone loss requires very low temperatures in the stratosphere combined with sunlight. This year’s extreme loss of ozone can be explained by the temperatures above Antarctica reaching the lowest recorded in the area since 1979," ESA Atmospheric Engineer Claus Zehner said.

Ozone is a protective layer found about 25 kilometres above us mostly in the stratospheric stratum of the atmosphere that acts as a sunlight filter shielding life on Earth from harmful ultraviolet rays. Over the last decade the ozone level has lowered by about 0,3% per year on a global scale, increasing the risk of skin cancer, cataracts and harm to marine life.

The thinning of the ozone is caused by the presence of pollutants in the atmosphere such as chlorine, originating from man-made pollutants like chlorofluorocarbons (CFCs), which have still not vanished from the air despite being banned under the Montreal Protocol (1987).

During the southern hemisphere winter, the atmospheric mass above the Antarctic continent is kept cut off from exchanges with mid-latitude air by prevailing winds known as the polar vortex. This leads to very low temperatures, and in the cold and continuous darkness of this season, polar stratospheric clouds are formed that contain chlorine.

As the polar spring arrives, the combination of returning sunlight and the presence of polar stratospheric clouds leads to splitting of chlorine compounds into highly ozone-reactive radicals that break ozone down into individual oxygen molecules. A single molecule of chlorine has the potential to break down thousands of molecules of ozone.

The ozone hole, first recognised in 1985, typically persists until November or December, when the winds surrounding the South Pole (polar vortex) weaken, and ozone-poor air inside the vortex is mixed with ozone-rich air outside it.

Envisat, the largest Earth observation satellite ever built, can localise ozone depletion and track its changes, enabling the rapid estimation of UV radiation as well as providing forecasting. The three atmospheric instruments aboard Envisat are the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), the global ozone monitoring by occultation of stars (GOMOS) sensor and the Michelson interferometer for passive atmospheric sounding (MIPAS).

In the framework of GMES (Global Monitoring of the Environment and Security), ESA has backed a project named TEMIS (Tropospheric Emission Monitoring Internet Service) that provides operational ozone and UV radiation monitoring based on SCIAMACHY and GOME-1 data. The ozone-monitoring data provided by these instruments span a time period of 11 years, which will be extended by the upcoming MetOp satellite series.

The first MetOp satellite in the series of three is scheduled to be launched in 2006 and will assist climate researchers in monitoring ozone levels and other atmospheric parameters. MetOp – Europe’s first polar-orbiting satellite and a mission dedicated to operational meteorology – will include a next-generation ozone-monitoring instrument called GOME-2, intended to guarantee continuity of observation of this vital environmental factor well into the following decades.

"Long-term measurements of ozone levels are of key importance for being able to monitor the ozone’s predicted recovery, which is currently estimated to take place by around 2060," Zehner said.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMQBOKKKSE_planet_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>