Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record ozone loss during 2006 over South Pole

04.10.2006
Ozone measurements made by ESA’s Envisat satellite have revealed the ozone loss of 40 million tonnes on 2 October 2006 has exceeded the record ozone loss of about 39 million tonnes for 2000.

Ozone loss is derived by measuring the area and the depth of the ozone hole. The size of this year’s ozone hole is 28 million square km, nearly as large as the record ozone hole extension during 2000, and the depth of the ozone hole is around 100 Dobson Units, rivalling the record low ozone values in 1998. This year’s record ozone loss was reached because these two measurements occurred during the same time period. (A Dobson unit is a unit of measurement that describes the thickness of the ozone layer in a column directly above the location being measured.)

"Such significant ozone loss requires very low temperatures in the stratosphere combined with sunlight. This year’s extreme loss of ozone can be explained by the temperatures above Antarctica reaching the lowest recorded in the area since 1979," ESA Atmospheric Engineer Claus Zehner said.

Ozone is a protective layer found about 25 kilometres above us mostly in the stratospheric stratum of the atmosphere that acts as a sunlight filter shielding life on Earth from harmful ultraviolet rays. Over the last decade the ozone level has lowered by about 0,3% per year on a global scale, increasing the risk of skin cancer, cataracts and harm to marine life.

The thinning of the ozone is caused by the presence of pollutants in the atmosphere such as chlorine, originating from man-made pollutants like chlorofluorocarbons (CFCs), which have still not vanished from the air despite being banned under the Montreal Protocol (1987).

During the southern hemisphere winter, the atmospheric mass above the Antarctic continent is kept cut off from exchanges with mid-latitude air by prevailing winds known as the polar vortex. This leads to very low temperatures, and in the cold and continuous darkness of this season, polar stratospheric clouds are formed that contain chlorine.

As the polar spring arrives, the combination of returning sunlight and the presence of polar stratospheric clouds leads to splitting of chlorine compounds into highly ozone-reactive radicals that break ozone down into individual oxygen molecules. A single molecule of chlorine has the potential to break down thousands of molecules of ozone.

The ozone hole, first recognised in 1985, typically persists until November or December, when the winds surrounding the South Pole (polar vortex) weaken, and ozone-poor air inside the vortex is mixed with ozone-rich air outside it.

Envisat, the largest Earth observation satellite ever built, can localise ozone depletion and track its changes, enabling the rapid estimation of UV radiation as well as providing forecasting. The three atmospheric instruments aboard Envisat are the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), the global ozone monitoring by occultation of stars (GOMOS) sensor and the Michelson interferometer for passive atmospheric sounding (MIPAS).

In the framework of GMES (Global Monitoring of the Environment and Security), ESA has backed a project named TEMIS (Tropospheric Emission Monitoring Internet Service) that provides operational ozone and UV radiation monitoring based on SCIAMACHY and GOME-1 data. The ozone-monitoring data provided by these instruments span a time period of 11 years, which will be extended by the upcoming MetOp satellite series.

The first MetOp satellite in the series of three is scheduled to be launched in 2006 and will assist climate researchers in monitoring ozone levels and other atmospheric parameters. MetOp – Europe’s first polar-orbiting satellite and a mission dedicated to operational meteorology – will include a next-generation ozone-monitoring instrument called GOME-2, intended to guarantee continuity of observation of this vital environmental factor well into the following decades.

"Long-term measurements of ozone levels are of key importance for being able to monitor the ozone’s predicted recovery, which is currently estimated to take place by around 2060," Zehner said.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMQBOKKKSE_planet_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>