Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boat paint to blame for Norfolk Broads' desolation

20.09.2006
One of the main culprits behind an environmental catastrophe that desolated one of Britain's most important wildlife habitats has finally been identified in a study led by researchers from UCL (University College London) and Acroloxus Wetlands Consultancy Ltd, Canada.

In the current issue of the journal Environmental Science & Technology, they reveal that introduction of the compound tributyltin (TBT) as a biocide in boat paint in the 1960s resulted in a dramatic and sudden loss of aquatic vegetation from most of the 50 or so Norfolk Broads lakes.

At the time, scientists pointed the finger at contamination from sewage works and fertiliser run-off from farmland, despite suggestions from the local community that the burgeoning leisure boating industry might be to blame.

Though the use of TBT was banned in freshwater systems in the UK in 1987, the researchers say 40 years on from TBT's introduction the fragile ecosystem remains shattered despite expensive attempts to restore it.

Dr Carl Sayer, of the UCL Environmental Change Research Centre, who co-led the study, says: "For too long TBT has been neglected as a driver of environmental destruction in freshwater wetlands and even though it is no longer in use in UK inland waterways, TBT contamination and its negative effects are still being reported all over the world.

"Real concerns have been raised about TBT derived from industrial and ship breaking activities in several major river systems including the Ganges, Brahmaputra and Yangtze – all of which are connected to shallow lakes. In the case of the Yangtze, the linked shallow lakes are some of the largest in the world and, like the Broads, have experienced problems with plant loss on a large scale."

TBT was originally designed for use on the hulls of large ocean-going ships to reduce the build-up of barnacles. Since the 1970s it has been linked to a host of negative effects in the marine environment including mutations in shellfish. An aggressive marketing programme in the 1960s saw its use fashionably worldwide on much smaller craft both in the oceans and within inland waterways.

"TBT is extremely toxic and highly persistent in the environment, earning it the controversial title as the most toxic substance ever introduced deliberately by man into the aquatic environment," explains Dr Sayer.

"In freshwaters, once TBT is released from an antifouling coating it is rapidly absorbed by bacteria and algae, and eventually works its way up the food chain. Within a short period of time after the paint's introduction to the Broads, it knocked out many of the small invertebrates which are a part of the life support system for water plants – turning the waters of the Broads green with algae."

To investigate levels of TBT in the Broads the researchers took sediment cores from two lakes, one close to the centre of the boating industry and the other half a kilometre away. Results show an abrupt decline in plant and invertebrate populations at the precise time that a strong TBT signature was detected.

"The irony of the tale is that the paint was designed to stop barnacles attaching to boats – which you don't get in freshwater. By simply lifting boats out of the water once a year and using a bit of elbow grease, one of Britain's areas of outstanding natural beauty might still be intact rather than on the long road to recovery."

Judith H Moore | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>