Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global changes alter plant growth schedule

05.09.2006
Any gardener knows that different plant species mature at different times. Scientists studying natural plant communities know this phenomenon allows species to co-exist by reducing overlap so there is less competition for limited resources. Scientists working in a natural grassland ecosystem in California have now found evidence that climate change may alter this delicate balance.

"Under today's conditions, grasses flower early in the growing season and wildflowers flower later, but when we increased the concentration of carbon dioxide to mirror conditions 50 years from now, these two groups flowered at the same time," said Elsa Cleland, lead author with the Jasper Ridge Global Change Experiment at Stanford University and the Carnegie Institution's Department of Global Ecology.* The results are published in the on-line early edition (September 4-8) of the Proceedings of the National Academy of Sciences.**

In recent decades, scientists have observed accelerated springtime phenology--the timing of developmental activity in many plant and animal species--and assumed it is a response to global warming. The Jasper Ridge researchers wanted to know if phenology responded similarly to other important aspects of global change, such as increasing atmospheric CO2 concentrations, altered rainfall patterns, and increased nitrogen deposition.

While the researchers found that experimental warming accelerated springtime flowering of all species, they were surprised to find differing responses to elevated CO2 and nitrogen deposition, both alone and in combination. For each of these factors, wildflowers responded by flowering earlier, while the grasses flowered later. Because grasses dominate this ecosystem, the scientists found that the overall timing of plant growth was delayed under elevated CO2.

"This research shows that global warming is just part of the picture," said Christopher Field, director of the project. "It highlights the fact that opposing responses of different species to global changes may cause us to underestimate the degree to which natural communities are already responding to changing environmental conditions."

Elsa Cleland | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>