Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global changes alter plant growth schedule

05.09.2006
Any gardener knows that different plant species mature at different times. Scientists studying natural plant communities know this phenomenon allows species to co-exist by reducing overlap so there is less competition for limited resources. Scientists working in a natural grassland ecosystem in California have now found evidence that climate change may alter this delicate balance.

"Under today's conditions, grasses flower early in the growing season and wildflowers flower later, but when we increased the concentration of carbon dioxide to mirror conditions 50 years from now, these two groups flowered at the same time," said Elsa Cleland, lead author with the Jasper Ridge Global Change Experiment at Stanford University and the Carnegie Institution's Department of Global Ecology.* The results are published in the on-line early edition (September 4-8) of the Proceedings of the National Academy of Sciences.**

In recent decades, scientists have observed accelerated springtime phenology--the timing of developmental activity in many plant and animal species--and assumed it is a response to global warming. The Jasper Ridge researchers wanted to know if phenology responded similarly to other important aspects of global change, such as increasing atmospheric CO2 concentrations, altered rainfall patterns, and increased nitrogen deposition.

While the researchers found that experimental warming accelerated springtime flowering of all species, they were surprised to find differing responses to elevated CO2 and nitrogen deposition, both alone and in combination. For each of these factors, wildflowers responded by flowering earlier, while the grasses flowered later. Because grasses dominate this ecosystem, the scientists found that the overall timing of plant growth was delayed under elevated CO2.

"This research shows that global warming is just part of the picture," said Christopher Field, director of the project. "It highlights the fact that opposing responses of different species to global changes may cause us to underestimate the degree to which natural communities are already responding to changing environmental conditions."

Elsa Cleland | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>