Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of just one species makes big difference in freshwater ecosystem

22.08.2006
Researchers at Dartmouth, Cornell University, and the University of Wyoming have learned that the removal of just one important species in a freshwater ecosystem can seriously disrupt how that environment functions. This finding contradicts earlier notions that other species can jump in and compensate for the loss.

Brad Taylor, currently a research associate in the department of biological sciences at Dartmouth, and his colleagues studied a fish called the flannelmouth characin (Prochilodus mariae) native to South American rivers. This particular fish eats detritus, the fine organic matter on the river bottom, and because of this, it plays a critical role in regulating the breakdown and transport of carbon in the rivers.

"This fish species is a popular food source; it is harvested regularly, and in some cases, it's overfished," says Taylor, the lead author on the study that was published in the August 11 issue of the journal Science. "We learned that removing this particular fish greatly altered the metabolic activity of the river ecosystem. Other fish species did not compensate for the lack of Prochilodus, an effect consistent with observations from other rivers where they have been excluded much longer by dams."

The researchers used a heavy, plastic divider to split a 210-meter stretch (a little more than a tenth of a mile) of Rio Las Marías in Venezuela into two separate river sections. On one side, they removed only Prochilodus, and on the other, all the fish remained. The team then took a series of measurements upstream and downstream to quantify the transport of particulate organic carbon (POC).

"Although there are more than 80 fish species in this small river, the detritivores, like Prochilodus, make up 50-80 percent of the fish biomass. Their abundance makes them attractive targets for harvesting by people. So when we took them away, not only was the impact astounding, it also revealed how their loss could change carbon flow, an important measure of ecosystem function," says Taylor.

During a six-year period, Taylor and his team discovered a strong association between Prochilodus abundance and the downstream transport of POC. With Prochilodus present, the organic carbon was distributed more evenly along the length of the river. Without Prochilodus present, large amounts of organic carbon accumulated in upstream areas, and it was consumed by bacteria, and therefore not readily available to organisms living farther downstream. In contrast to other migratory fish species, like salmon, that provide nutrients to the river (in the form of their carcasses), this species modifies the availability of nutrients through its activities. The researchers learned that the loss of Prochilodus increased the rate at which organic carbon was converted to carbon dioxide, which could increase the flux of carbon dioxide from the river to the atmosphere, a topic Taylor will be exploring in the coming months.

"We also used the wealth of information contained in museum specimens of Prochilodus collected over the past 28 years from throughout the Orinoco basin in Venezuela to document that the maximum body size of individuals has declined dramatically, from about 2.2 pounds to a half a pound, which is a hallmark of overharvested populations" says Taylor. "Although over hundreds or thousands of years other species may fill the role played by Prochilodus, but people and other organisms are highly dependent on the services provided by Prochilodus now. We hope that our study draws the attention of governments and scientists to protect and study the importance of the smaller and more abundant organisms, which constitute most of the Earth's biodiversity and are now being heavily targeted by humans. In many parts of the world this task will not be easy because there is little enforcement of existing fishing laws and many people depend on such species as their primary source of affordable animal protein."

Taylor's research is funded by the National Science Foundation.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>