Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time of day tempers tadpoles' response to predators

14.08.2006
To a tiny tadpole, life boils down to two basic missions: eat, and avoid being eaten. But there's a trade-off. The more a tadpole eats, the faster it grows big enough to transform into a frog; yet finding food requires being active, which ups the odds of becoming someone else's dinner.

Scientists have known that prey adjust their activity levels in response to predation risk, but new research by a University of Michigan graduate student shows that internal factors, such as biorhythms, temper their responses.

Michael Fraker, a doctoral student in the laboratory of ecology and evolutionary biology professor Earl Werner, will present his results Aug. 10 at a meeting of the Ecological Society of America in Memphis, Tenn.

Fraker studied tadpoles of the green frog (Rana clamitans), which normally feed more at night, to see whether their responses to predatory dragonfly larvae differed with time of day.

"Green frog tadpoles, like many other aquatic animals, assess predation risk indirectly by sensing chemicals released by their predators into the water," Fraker said. Typically, the tadpoles respond to such cues by swimming down to the bottom, seeking shelter and remaining still. In his experiments, Fraker exposed tadpoles in a tank to the chemical signatures of dragonfly larvae for one hour during the day and one hour at night. Then he recorded their swimming and feeding activity during and after exposure. Both during the day and at night, the tadpoles initially responded similarly to the chemical cues, showing the typical plunge in activity. But at night they returned to feeding more quickly than during the day.

"My interpretation of these results is that green frog tadpoles behave more conservatively in response to a predator chemical cue during the day because predation risk may still be fairly high and the tadpoles are going to feed very little anyway. That means the growth rate-to-predation risk ratio is low. At night, the ratio is higher because that's when the tadpoles do most of their feeding. This favors a quicker return to their pre-cue activity levels."

Considering biorhythmic activity patterns in predator-prey studies is something of a new slant, Fraker said. "The main implication of my results is that prey behavior can be influenced by both external factors---the chemical cues released by the predators---and internal factors such as circadian rhythms. This is important for understanding the mechanisms of prey behavior, which need to be identified in order to make long-term predictions about the effects of prey behavior in ecological communities."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>