Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time of day tempers tadpoles' response to predators

14.08.2006
To a tiny tadpole, life boils down to two basic missions: eat, and avoid being eaten. But there's a trade-off. The more a tadpole eats, the faster it grows big enough to transform into a frog; yet finding food requires being active, which ups the odds of becoming someone else's dinner.

Scientists have known that prey adjust their activity levels in response to predation risk, but new research by a University of Michigan graduate student shows that internal factors, such as biorhythms, temper their responses.

Michael Fraker, a doctoral student in the laboratory of ecology and evolutionary biology professor Earl Werner, will present his results Aug. 10 at a meeting of the Ecological Society of America in Memphis, Tenn.

Fraker studied tadpoles of the green frog (Rana clamitans), which normally feed more at night, to see whether their responses to predatory dragonfly larvae differed with time of day.

"Green frog tadpoles, like many other aquatic animals, assess predation risk indirectly by sensing chemicals released by their predators into the water," Fraker said. Typically, the tadpoles respond to such cues by swimming down to the bottom, seeking shelter and remaining still. In his experiments, Fraker exposed tadpoles in a tank to the chemical signatures of dragonfly larvae for one hour during the day and one hour at night. Then he recorded their swimming and feeding activity during and after exposure. Both during the day and at night, the tadpoles initially responded similarly to the chemical cues, showing the typical plunge in activity. But at night they returned to feeding more quickly than during the day.

"My interpretation of these results is that green frog tadpoles behave more conservatively in response to a predator chemical cue during the day because predation risk may still be fairly high and the tadpoles are going to feed very little anyway. That means the growth rate-to-predation risk ratio is low. At night, the ratio is higher because that's when the tadpoles do most of their feeding. This favors a quicker return to their pre-cue activity levels."

Considering biorhythmic activity patterns in predator-prey studies is something of a new slant, Fraker said. "The main implication of my results is that prey behavior can be influenced by both external factors---the chemical cues released by the predators---and internal factors such as circadian rhythms. This is important for understanding the mechanisms of prey behavior, which need to be identified in order to make long-term predictions about the effects of prey behavior in ecological communities."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>