Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Burns Fuel with Almost Zero Emissions

22.06.2006
Simple design makes ultra-low emission combustion more efficient, affordable and stable
Georgia Tech researchers have created a new combustor (combustion chamber where fuel is burned to power an engine or gas turbine) designed to burn fuel in a wide range of devices ¯ with next to no emission of nitrogen oxide (NOx) and carbon monoxide (CO), two of the primary causes of air pollution. The device has a simpler design than existing state-of-the-art combustors and could be manufactured and maintained at a much lower cost, making it more affordable in everything from jet engines and power plants to home water heaters.

“We must burn fuel to power aircrafts and generate electricity for our homes. The combustion community is working very hard to find ways to burn the fuel completely and derive all of its energy while minimizing emissions,” said Dr. Ben Zinn, Regents’ professor, the David S. Lewis Jr. Chair in Georgia Tech’s Guggenheim School of Aerospace Engineering and a key collaborator on the project. “Our combustor has an unbelievably simple design, and it would be inexpensive to make and inexpensive to maintain.”

A comparison of Georgia Tech’s combustor with a traditional combustor: (Left) A traditional combustor mixes fuel and air before they are injected into the combustion chamber. (Right) Tech’s combustor injects the fuel and air separately into the combusto

Attaining ultra low emissions has become a top priority for combustion researchers as federal and state restrictions on pollution continuously reduce the allowable levels of NOx and CO produced by engines, power plants and industrial processes.

Called the Stagnation Point Reverse Flow Combustor, the Georgia Tech device, originally developed for NASA, significantly reduces NOx and CO emissions in a variety of aircraft engines and gas turbines that burn gaseous or liquid fuels. It burns fuel with NOx emissions below 1 parts per million (ppm) and CO emissions lower than 10 ppm, significantly lower than emissions produced by other combustors.

The project’s initial goal was to develop a low emissions combustor for aircraft engines and power-generating gas turbines that must stably burn large amounts of fuel in a small volume over a wide range of power settings (or fuel flow rates). But the design can be adapted for use in a variety of applications, including something as large as a power generating gas turbine or as small as a water heater in a home.

“We wanted to have all the clean-burning advantages of a low temperature combustion process while burning a large amount of fuel in a small volume,” Zinn said.

The combustor burns fuel in low temperature reactions that occur over a large portion of the combustor. By eliminating all high temperature pockets through better control of the flow of the reactants and combustion products within the combustor, the device produces far lower levels of NOx and CO and avoids acoustic instabilities that are problematic in current low emissions combustors.

To reduce emissions in existing combustors, fuel is premixed with a large amount of swirling air flow prior to injection into the combustor. This requires complex and expensive designs, and the combustion process often excites instabilities that damage the system.

But Georgia Tech’s design eliminates the complexity associated with premixing the fuel and air by injecting the fuel and air separately into the combustor while its shape forces them to mix with one another and with combustion products before ignition occurs.

The project was funded by the NASA University Research Engineering Technology Institute (URETI) Center on Aeropropulsion and Power and Georgia Tech. The primary investigators on the project were Professors Ben T. Zinn, Yedidia Neumeier, Jerry Seitzman and Jeff Jagoda from the School of Aerospace Engineering, and Visiting Research Engineers Yoav Weksler and Ben Ami Hashmonay.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked ninth among U.S. News & World Report's top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>