Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Armed with cannons, cranes and wind machines, engineers test houses

22.06.2006
The wind roared against the house. Shingles and tar paper flew off the roof, exposing bare plywood. The front window buckled, then shattered, shooting glass shards into the living room.

The 1970s-style vacant ranch house was taking a beating, but not from a hurricane. Instead, engineers were simulating the effects of hurricane-force winds and wind-driven rain with a custom-built wind machine called the “Wall of Wind.” Two caged airboat propellers, each driven by earsplitting Chevrolet V8 502 motors, blasted the house with 120-mph gusts and sheets of water.

It was just one of several experiments earlier this month on 10 vacant homes in rural Polk County. The goal: To learn more about why most of Florida’s homes — those built before the state’s hurricane building code went into effect — buckle under hurricane-force winds. And to test the various methods for fortifying weak points, from reinforcing garage doors to protecting windows with plywood or other coverings.

“What we’re trying to do is evaluate how much we can reduce an older home’s vulnerability by applying post-construction retrofits,” said Kurt Gurley, lead researcher on the state-funded project and an associate professor of civil engineering at the University of Florida.

Although some counties have had their own building codes for decades, Florida adopted its first statewide building code in 1994, two years after Hurricane Andrew devastated South Florida. The state significantly upgraded that code in 2001, strengthening provisions aimed at preventing hurricane wind damage.

Previous research by Gurley and his colleagues has shown that homes built under the most recent code stood up to the four 2004 hurricanes better than those built under the first code. The problem, Gurley said, is that the majority of existing homes were built before 1992. In regions developed early, such as Tampa and St. Petersburg, nearly all the homes in many neighborhoods precede the statewide code. Gurley said that raises two questions: How well do these homes resist hurricane winds, and which of many possible retrofits make the most sense for homeowners seeking to fortify them?

“We want to quantify how much you reduce your vulnerability to wind with the various retrofits so that people can weigh the options,” Gurley said. “Some homeowners will have limited budgets, so we hopefully we’ll come up with a way for them to prioritize.”

Engineers have extensively tested building components and retrofits, but the work is usually done in labs, Gurley said. That means that while the results may have merit, they don’t necessarily match field conditions, where rusted nails, rotted wood and other conditions frequently complicate matters.

“That’s about the most important thing: We’re working in real conditions, capturing data from real houses,” said Forrest Masters, an assistant professor of civil engineering and director of the Laboratory for Wind Engineering Research at the International Hurricane Research Center at Florida International University.

The 10 Polk County homes, built in the 1970s and 1980s, are typical for modest homes of their era. Their walls are concrete block, with aluminum frame windows and wood truss frame roofs. The engineers had access to the homes because they had flooded extensively and were bought through a state-federal buyout program for vulnerable properties.

Besides the wind tests, the researchers used a trailer-mounted air cannon to fire two-by-four boards at one home’s windows covered with Lexan, a Plexiglas-like material that can be used for shutters. The test was meant to stimulate flying debris in storms, a common source of damage in heavily populated areas that occurs as homes come apart in storms.

A radar gun clocked the two-by-four at 40 mph as it slammed into the Lexan. The Lexan withstood the blow, but it flexed inward several inches, causing the glass window it was protecting to shatter. More important than the loss of a window, the protective cover stayed in place, preventing wind and rain from entering the house, researchers said.

To test the strength of roof-to-wall connections against major uplift wind forces on the roof, the engineers used a crane to yank up on the edge of one roof. Rather than snap at the metal connection between the rafters and concrete block, the force cracked off the concrete beam at the wall. In newer homes, that beam is connected to the wall with steel rods, but homeowners of older homes can anchor the beam with a metal strap, researchers said.

UF, FIU, Florida A&M University, the University of Western Ontario and the nonprofit Tampa-based Institute of Business and Home Safety are collaborating on the project, funded with a $190,000 grant from the Florida Department of Community Affairs.

Kurt Gurley | EurekAlert!
Further information:
http://www.ce.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>