Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recent, rapid climate change is driving evolution of animal species

09.06.2006
Oregon researcheres say organisms are adapting to altered seasons and not to direct effects of increasing temperatures

Rapid climate changes over the past several decades have led to heritable, genetic changes in animals as diverse as squirrels, birds and mosquitoes, according to University of Oregon evolutionary geneticists.

Writing in the "Perspectives" section of the June 9 issue of SCIENCE, William E. Bradshaw, professor of biology, and Christina Holzapfel, biology research associate, show that diverse animal populations have changed genetically in response to rapid climate change. These genetic changes are in response to altered seasonal events and not to the expected direct effects of increased summer temperatures.

Global warming is proceeding fastest at the most northern latitudes, resulting in longer growing seasons while simultaneously alleviating winter cold stress without imposing summer heat stress. In short, northern climates are becoming more like those in the south.

"Over the past 40 years, animal species have been extending their range toward the poles and populations have been migrating, developing or reproducing earlier," said Bradshaw. "These expansions and changes have often been attributed to 'phenotypic plasticity,' or the ability of individuals to modify their behavior, morphology or physiology in response to altered environmental conditions."

However, adds Holzapfel, "phenotypic plasticity is not the whole story. Studies show that over the past several decades, rapid climate change has led to heritable, genetic changes in animal populations."

Bradshaw and Holzapfel provide a number of examples of these changes: Canadian red squirrels reproducing earlier in the year; German blackcaps (birds) are migrating and arriving earlier to their nesting grounds; and, North American mosquitoes living in the water-filled leaves of carnivorous plants are using shorter, more "southern" day lengths to cue the initiation of larval dormancy.

In contrast, the authors write that no studies have found genetic changes in populations relating to the generally expected direct effects of increasing temperature. There are no examples in animal populations of genetic changes that have either increased the upper limits of heat tolerance or increased the optimal temperature for growth, development and reproduction.

"Small animals with short life cycles and large population sizes will probably adapt to longer growing seasons and be able to persist," said Bradshaw. "However, populations of many large animals with longer life cycles and smaller population sizes will experience a decline in population size or be replaced by more southern species."

"Consequently, genetic shifts in the timing of seasonal events should precede genetic shifts of thermal optima or increased heat tolerance over evolutionary time," said Holzapfel. "That is the pattern that is emerging. Questions remain about the relative rates of environmental and evolutionary change. However, it is clear that unless the long-term magnitude of rapid climate change is widely acknowledged and effective steps are taken to mitigate its effects, natural communities that we are familiar with will cease to exist."

Mary Stanik | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>