Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Recent, rapid climate change is driving evolution of animal species

Oregon researcheres say organisms are adapting to altered seasons and not to direct effects of increasing temperatures

Rapid climate changes over the past several decades have led to heritable, genetic changes in animals as diverse as squirrels, birds and mosquitoes, according to University of Oregon evolutionary geneticists.

Writing in the "Perspectives" section of the June 9 issue of SCIENCE, William E. Bradshaw, professor of biology, and Christina Holzapfel, biology research associate, show that diverse animal populations have changed genetically in response to rapid climate change. These genetic changes are in response to altered seasonal events and not to the expected direct effects of increased summer temperatures.

Global warming is proceeding fastest at the most northern latitudes, resulting in longer growing seasons while simultaneously alleviating winter cold stress without imposing summer heat stress. In short, northern climates are becoming more like those in the south.

"Over the past 40 years, animal species have been extending their range toward the poles and populations have been migrating, developing or reproducing earlier," said Bradshaw. "These expansions and changes have often been attributed to 'phenotypic plasticity,' or the ability of individuals to modify their behavior, morphology or physiology in response to altered environmental conditions."

However, adds Holzapfel, "phenotypic plasticity is not the whole story. Studies show that over the past several decades, rapid climate change has led to heritable, genetic changes in animal populations."

Bradshaw and Holzapfel provide a number of examples of these changes: Canadian red squirrels reproducing earlier in the year; German blackcaps (birds) are migrating and arriving earlier to their nesting grounds; and, North American mosquitoes living in the water-filled leaves of carnivorous plants are using shorter, more "southern" day lengths to cue the initiation of larval dormancy.

In contrast, the authors write that no studies have found genetic changes in populations relating to the generally expected direct effects of increasing temperature. There are no examples in animal populations of genetic changes that have either increased the upper limits of heat tolerance or increased the optimal temperature for growth, development and reproduction.

"Small animals with short life cycles and large population sizes will probably adapt to longer growing seasons and be able to persist," said Bradshaw. "However, populations of many large animals with longer life cycles and smaller population sizes will experience a decline in population size or be replaced by more southern species."

"Consequently, genetic shifts in the timing of seasonal events should precede genetic shifts of thermal optima or increased heat tolerance over evolutionary time," said Holzapfel. "That is the pattern that is emerging. Questions remain about the relative rates of environmental and evolutionary change. However, it is clear that unless the long-term magnitude of rapid climate change is widely acknowledged and effective steps are taken to mitigate its effects, natural communities that we are familiar with will cease to exist."

Mary Stanik | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>