Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where climate is made in a greenhouse world

02.06.2006


New scientific results for the Late Cretaceous greenhouse indicate radically different climatic mechanisms operating about 75-90 million years ago compared to the ones that control today’s climate. The study, published on 29 May 2006 in “Palaeogeography, Palaeoclimatology, Palaeoecology” as part of a special issue on “Causes and Consequence of Marine Organic Carbon Burial Through Time” by Sascha Floegel from the IFM-GEOMAR in Kiel/Germany and Thomas Wagner from the University of Newcastle upon Tyne/UK aims to identify the main ‘climate kitchen’ in a world with about 5-9°C warmer global temperatures than today.



The researchers focus their interest on the causal relationships and feedbacks between the tropics and higher latitudes. Using marine geological records and data from global paleoclimate simulations they identify a previously unrecognized link between higher latitude climate dynamics and tropical African climate, the latter leading to exceptionally high burial of organic carbon in the deep tropical Atlantic. Marine geological record show that enhanced burial of organic carbon in the deep sea was confined to short time envelops of about 5 thousand years that reoccurred over millions of years at a regular pattern (see Beckmann and co-workers, published 8 September 2005 in Nature 437).

Climate modelling is one key technique to identify and understand the larger-scale mechanisms that result in geological evidence. By varying one of Earth’s orbital parameters, the precession of the equinoxes, the modelling setup used in this study provides new insights to the dynamics of global climate during past greenhouse conditions. Accordingly, changes in the amount of energy approaching the top of the atmosphere, called “insolation”, finally triggered cyclic variations of the tropical water cycle in tropical Africa. Periods of enhanced precipitation and freshwater runoff then resulted in massive burial of organic carbon at the sea floor suggesting that processes in the atmosphere drive changes in the ocean. The remaining, fundamental question on the source area(s) where cyclic fluctuations in tropical water cycling and marine carbon burial were triggered was addressed using global climate simulation.


Applying four different orbital configurations of one complete precession cycle the model identifies cross-latitudinal variations of atmospheric pressure systems, fluctuations in the magnitude and direction of surface winds, and associated precipitation and runoff patterns. Previously unrecognized, the model identifies the strongest variations in atmospheric pressure above the South Atlantic at mid-southern latitudes between 25–55°S. Establishment of an atmospheric teleconnection between this area and tropical Africa, however, is limited to one specific orbital configuration, which lasted for about 5 thousand years and caused strongest climate contrasts in a seasonal cycle.

These new results challenge current notions on role of the tropics as main driver of Cretaceous climate. They rather support the conclusion that tropical climate in a greenhouse world is ultimately triggered by climate change at mid-southern latitudes, with precipitation and river discharge being the transport mechanisms.

Today the tropics control a big fraction of Earth’s climate. The new findings reported here suggest that the mid-latitudes will have a much stronger impact on low latitude climate system at predicted future levels of atmospheric CO2. This conclusion has severe consequences for the future low latitude water cycle and associated nutrient and carbon fluxes to coastal areas. The latter fluxes from the continent strongly influence surface ocean productivity, O2 consumption in the water column and thus marine ecosystems, and many other processes affecting the global carbon balance. The broader implications support substantial interaction between the water cycle and atmospheric circulation on regional and hemispheric scales during times of global warmth. As evident from this study we probably still do not realise all the relevant processes that drive future global warming. Knowing them, however, is critical to get prepared and mitigate the effects for society and ecosystems.

Professor Thomas Wagner | alfa
Further information:
http://www.ncl.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>