Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walrus Calves Stranded by Melting Sea Ice

18.04.2006


Scientists have reported an unprecedented number of unaccompanied and possibly abandoned walrus calves in the Arctic Ocean, where melting sea ice may be forcing mothers to abandon their pups as the mothers follow the rapidly retreating ice edge north.



Nine lone walrus calves were reported swimming in deep waters far from shore by researchers aboard the U.S. Coast Guard icebreaker Healy during a cruise in the Canada Basin in the summer of 2004. Unable to forage for themselves, the calves were likely to drown or starve, the scientists said.

Lone walrus calves far from shore have not been described before, the researchers report in the April issue of Aquatic Mammals. The sightings suggest that increased polar warming may lead to decreases in the walrus population.


“We were on a station for 24 hours, and the calves would be swimming around us crying. We couldn’t rescue them,” said Carin Ashjian, a biologist at Woods Hole Oceanographic Institution and a member of the research team.

The researchers found evidence of warmer ocean temperatures that may have rapidly melted seasonal sea ice over the shallow continental shelf where walruses dive to feed on bottom-dwelling animals such as clams and crabs. Walrus need the ice to rest themselves and to leave the pups to rest while the mothers feed. Ice remained over very deep water.

“If walruses and other ice-associated marine mammals cannot adapt to caring for their young in shallow waters without sea-ice available as a resting platform between dives to the sea floor, a significant population decline of this species could occur,” the research team wrote. The lead author of the study is Lee W. Cooper, a biogeochemist at the University of Tennessee.

Cooper, Ashjian and other researchers made the unexpected walrus calf sightings during a cruise to investigate the impact of global climate change on the oceanic ecosystem over the continental shelf of Alaska. Their work focused on the shallower waters of the continental shelf in the Chukchi Sea to deeper waters in the Beaufort Sea of the Western Arctic Ocean. The project was funded by the National Science Foundation and the Office of Naval Research.

Adult Pacific walrus, Odobenus rosmarus divergens, forage for food by diving as far as 200 meters about (630 feet) down to the seafloor and using sensitive facial bristles to locate prey. Sea ice normally forms over the continental shelf north of Alaska and persists even in summer. Adult walrus use the sea ice as a resting platform; mothers leave the calves there and dive to the bottom for food.

“The young can’t forage for themselves,” Ashjian said. “They don’t know how to eat,” and are dependent on their mothers’ milk for up to two years.

The researchers measured a mass of water as warm as 44°F (7°C) moving onto parts of the shelf from the Bering Sea to the south in 2004. This warm-water intrusion was more than six degrees higher than temperatures at the same time and location in 2002. The warmer water apparently caused seasonal sea ice to melt rapidly over the shallow continental shelf and retreat to deep water over the Arctic Ocean basins, where the water remained colder.

In the areas where ice remained, the bottom is up to 3,000 meters (about 9,300 feet) deep, too deep for even adult walrus to dive to feed. When sea ice retreats to such deep water, as it did in 2004, there are no platforms in shallow waters for mothers to rest and to leave their calves while they feed, and the pairs become separated.

Scientists on the Healy used geographic positioning, digital photography, ship bridge logs, and other observations to record the calves’ positions and bathymetric charts and depth sounder data to identify water depth. They documented the very warm water using both conductivity-temperature-depth (CTD) profile sampling and plankton-net sampling, which revealed zooplankton species that prefer warmer waters.

In addition to Copper and Ashjian, other researchers participating in the study were Sharon L. Smith of the Rosenstiel School of Marine and Atmospheric Sciences at the University of Miami; Louis A. Codispoti of the University of Maryland Center for Environmental Science; Jaqueline M. Grebmeier of the University of Tennessee; Robert G. Campbell of the University of Rhode Island Graduate School of Oceanography; and Evelyn B. Sherr of the College of Oceanographic and Atmospheric Sciences at Oregon State University.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu/mr/pr.do?id=12209

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>