Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Out of Africa – Saharan Sandstorms at Sea


Large quantities of Saharan dust are helping to fertilize the massive plankton blooms that occur in the tropical eastern Atlantic, a research project has confirmed.

A team including researchers from the School of Environmental Sciences at the University of East Anglia has been studying the desert dust, which is rich in nitrogen, iron and phosphorus, and its effect on the ocean’s nutrients, plankton production and the food chain.

The £600,000 project, is part of the Surface Ocean Lower Atmosphere Study, UK SOLAS, funded by the Natural Environment Research Council, NERC, and involves co-ordinating samples taken at sea with atmospheric measurements made from a research aircraft.

Visitors to The Science Museum in London will be able to participate in a hands-on exhibition, which includes satellite images and a dust sample, as well as getting the chance to ask scientists about the project this week (April 4 and 5).

The researchers carried out the first combined ship and aircraft campaign in the tropical Atlantic around the Cape Verde islands last month. A BAe 146 research aircraft made sorties from Dakar, Senegal over the Cape Verde islands to investigate the composition, radiative properties and deposition of the dust flowing from west Africa over the tropical Atlantic.

Dr Ellie Highwood of the University of Reading and her team in the aircraft sampled dust at different heights over the ocean while UEA’s Claire Powell and researchers from other universities were stationed on a ship collecting dust particles falling into the ocean.

The total quantity of dust involved, about 500 million tonnes per year, is sufficient to affect the climate. By partly absorbing and partly reflecting sunlight, the dust particles heat the air but cool the ocean surface.

The dust particles also encourage cloud formation, which reinforces the reflection of light back into space. Such effects can be far-reaching: hurricanes in the Caribbean begin their life off north-west Africa, with atmospheric dust being one of many factors influencing their early development.

Investigators confirmed that wind-blown dust from the Sahara desert plays a crucial role in fertilizing large areas of the Atlantic Ocean. The delivery of nutrients, and some metals common on land but scarce in the open ocean, stimulates the production of massive plankton blooms.

Dr Phil Williamson, project coordinator at UEA’s School of Environmental Sciences, said: “This study shows how important the links are between the different parts of the climate system.

“Dust storms are sporadic events and Saharan dust can come from many sources – it can be mixed with soot, from grassland and forest fires; and it can change its chemical and physical properties as it is carried in the atmosphere, at different heights and different moisture conditions. These complications make it difficult to include the dust effects in climate models.”

The UK SOLAS studies involve researchers from the National Oceanography Centre, Southampton and the University of East Anglia, Reading, Southampton, Manchester and Birmingham. NERC-funded research led by Dr Eric Achterberg (National Oceanography Centre, Southampton) and Dr Ellie Highwood (University of Reading), in collaboration with the UK Meteorological Office, the African Monsoon Multidisciplinary Analysis (AMMA), German SOLAS researchers and other international research groups.

Press Office | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>