Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out of Africa – Saharan Sandstorms at Sea

04.04.2006


Large quantities of Saharan dust are helping to fertilize the massive plankton blooms that occur in the tropical eastern Atlantic, a research project has confirmed.



A team including researchers from the School of Environmental Sciences at the University of East Anglia has been studying the desert dust, which is rich in nitrogen, iron and phosphorus, and its effect on the ocean’s nutrients, plankton production and the food chain.

The £600,000 project, is part of the Surface Ocean Lower Atmosphere Study, UK SOLAS, funded by the Natural Environment Research Council, NERC, and involves co-ordinating samples taken at sea with atmospheric measurements made from a research aircraft.


Visitors to The Science Museum in London will be able to participate in a hands-on exhibition, which includes satellite images and a dust sample, as well as getting the chance to ask scientists about the project this week (April 4 and 5).

The researchers carried out the first combined ship and aircraft campaign in the tropical Atlantic around the Cape Verde islands last month. A BAe 146 research aircraft made sorties from Dakar, Senegal over the Cape Verde islands to investigate the composition, radiative properties and deposition of the dust flowing from west Africa over the tropical Atlantic.

Dr Ellie Highwood of the University of Reading and her team in the aircraft sampled dust at different heights over the ocean while UEA’s Claire Powell and researchers from other universities were stationed on a ship collecting dust particles falling into the ocean.

The total quantity of dust involved, about 500 million tonnes per year, is sufficient to affect the climate. By partly absorbing and partly reflecting sunlight, the dust particles heat the air but cool the ocean surface.

The dust particles also encourage cloud formation, which reinforces the reflection of light back into space. Such effects can be far-reaching: hurricanes in the Caribbean begin their life off north-west Africa, with atmospheric dust being one of many factors influencing their early development.

Investigators confirmed that wind-blown dust from the Sahara desert plays a crucial role in fertilizing large areas of the Atlantic Ocean. The delivery of nutrients, and some metals common on land but scarce in the open ocean, stimulates the production of massive plankton blooms.

Dr Phil Williamson, project coordinator at UEA’s School of Environmental Sciences, said: “This study shows how important the links are between the different parts of the climate system.

“Dust storms are sporadic events and Saharan dust can come from many sources – it can be mixed with soot, from grassland and forest fires; and it can change its chemical and physical properties as it is carried in the atmosphere, at different heights and different moisture conditions. These complications make it difficult to include the dust effects in climate models.”

The UK SOLAS studies involve researchers from the National Oceanography Centre, Southampton and the University of East Anglia, Reading, Southampton, Manchester and Birmingham. NERC-funded research led by Dr Eric Achterberg (National Oceanography Centre, Southampton) and Dr Ellie Highwood (University of Reading), in collaboration with the UK Meteorological Office, the African Monsoon Multidisciplinary Analysis (AMMA), German SOLAS researchers and other international research groups.

Press Office | alfa
Further information:
http://comm.uea.ac.uk/press/release.asp?id=617

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>