Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Study Links "Smog" to Arctic Warming

15.03.2006


NASA scientists have found that a major form of global air pollution involved in summertime "smog" has also played a significant role in warming the Arctic.



In a global assessment of the impact of ozone on climate warming, scientists at the NASA Goddard Institute for Space Studies (GISS), New York, evaluated how ozone in the lowest part of the atmosphere changed temperatures over the past 100 years. Using the best available estimates of global emissions of gases that produce ozone, the GISS computer model study reveals how much this single air pollutant, and greenhouse gas, has contributed to warming in specific regions of the world.

According to this new research, ozone was responsible for one-third to half of the observed warming trend in the Arctic during winter and spring. Ozone is transported from the industrialized countries in the Northern Hemisphere to the Arctic quite efficiently during these seasons. The findings have been accepted for publication in the American Geophysical Union’s Journal of Geophysical Research-Atmospheres.


Ozone plays several different roles in the Earth’s atmosphere. In the high-altitude region of the stratosphere, ozone acts to shield the planet from harmful ultraviolet radiation. In the lower portion of the atmosphere (the troposphere), ozone can damage human health, crops and ecosystems. Ozone is also a greenhouse gas and contributes to global warming.

Ozone is formed from several other chemicals found in the atmosphere near the Earth’s surface that come from both natural sources and human activities such as fossil fuel burning, cement manufacturing, fertilizer application and biomass burning. Ozone is one of several air pollutants regulated in the United States by the U. S. Environmental Protection Agency.

The impact of ozone air pollution on climate warming is difficult to pinpoint because, unlike other greenhouse gases such as carbon dioxide, ozone does not last long enough in the lower atmosphere to spread uniformly around the globe. Its warming impact is much more closely tied to the region it originated from. To capture this complex picture, GISS scientists used a suite of three-dimensional computer models that starts with data on ozone sources and then tracks how ozone chemically evolved and moved around the world over the past century.

The warming impact of low-altitude ozone on the Arctic is very small in the summer months because ozone from other parts of the globe does not have time to reach the region before it is destroyed by chemical reactions fueled by ample sunshine. As a result, when it is summertime in the Northern Hemisphere, ozone-induced warming is largest near the sources of ozone emissions. The computer model showed large summer warming from ozone over western North America and eastern Europe/central Asia, areas with high levels of ozone pollution during that time of year.

The new results identify an unexpected benefit of air pollution control efforts worldwide, according to lead author Drew Shindell. "We now see that reducing ozone pollution can not only improve air quality but also have the added benefit of easing climate warming, especially in the Arctic."

The research was supported by NASA’s Atmospheric Chemistry Modeling and Analysis Program.

Leslie McCarthy | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2006/troposphere_ozone.html

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>