Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers to Scrutinize Megacity Pollution During Mexico City Field Campaign

06.03.2006


A team of researchers from the National Center for Atmospheric Research (NCAR) and other institutions is heading to Mexico City to participate in one of the most complex field campaigns ever undertaken in atmospheric chemistry. From March 1 to 29, the team will make multiple research flights in the NSF/NCAR C-130 aircraft and operate ground instruments to investigate the chemical and physical transformation of air pollution as it flows downwind from Mexico City.


The NSF/NCAR C-130 will fly out of Veracruz, Mexico to intercept Mexico City’s pollution plume downwind. A unique array of sensing instruments on board will sample the gases and aerosols in the plume. A four-engine turboprop, the NSF/NCAR C-130 was built for military transport and adapted for research missions in the mid-1990s. (©UCAR, photo by Carlye Calvin)


Mexico City, the world’s third largest urban area, has some of the worst air quality in the world. (Photo courtesy Nancy A. Marley.)



The team’s goal is to assess the pollution’s impact on regional and global air quality, climate, and ecosystems. The results are expected to be applicable to megacities (cities with 10 million or more inhabitants) in other locations around the world.

"Mexico City’s pollution probably doesn’t have a global impact, but all urban areas together do, and the world is urbanizing," explains NCAR scientist Sasha Madronich, one of the project’s principal investigators. "If we can understand the pollution impacts of Mexico City, we can apply this new knowledge to other urban areas across the globe."


The project, called MIRAGE (Megacity Impacts of Regional and Global Environments), is led by NCAR in partnership with several U.S. universities and other organizations.

MIRAGE is one component of a set of simultaneous field campaigns collectively called Megacity Initiative: Local and Global Research Observations (MILAGRO). This international effort will observe and quantify air pollution emitted by Mexico City from multiple perspectives. Other components of MILAGRO are led by the U.S. Department of Energy, the Molina Center on Energy and the Environment, and NASA. As part of the broader effort, researchers from more than 60 institutions in the United States, Mexico, and several other nations will convene in Mexico City to coordinate aircraft and ground-based measurements, satellite observations, and computer modeling. The cost of the MILAGRO campaign is estimated to be more than $20 million, with the National Science Foundation contributing about $10 million. NSF is also NCAR’s primary sponsor.

NCAR researchers hope that data from MIRAGE will shed light on four broad questions:

  • How far downwind does Mexico City’s pollution plume extend?
  • How are the pollutants transformed by chemical reactions occurring downwind of the city?
  • How do the pollutants affect visibility, as well as regional and global climate?
  • How do the urban pollutants interact with pollutants from other sources, such as agricultural and forest fires?

"We’re not looking so much at pollution inside the city because that’s already fairly well known," Madronich says. "We’re looking at the outflow. For the first time we’ll have an idea of how much pollution is outside the city and be able to understand its full life cycle."

Because air pollution is complicated, both chemically and physically, and evolves over time and distance, scientists have traditionally faced difficulty in quantifying its components. The MIRAGE team will use aircraft, ground stations, and satellite observations to gather data on how Mexico City’s air pollution ages as it disperses in the first hours and days after emission.

Aircraft and instruments

Researchers based in Veracruz, located east of the capital on the Gulf of Mexico, will crisscross Mexico City’s pollution plume in the C-130 aircraft. Using a complex package of instruments, they’ll make multiple flights to sample the gases and aerosols that comprise the plume, which usually spreads northeast from the city toward the gulf.

Others will set up ground-based instruments at the Technical University of Tecamac, about 25 miles (40 kilometers) northeast of Mexico City. From there, they will also launch GPS radiosondes, which are instrument packages attached to helium balloons that send atmospheric measurements to the ground via radio. The radiosondes will make vertical profiles of winds, temperatures, and humidity from the ground through the lower stratosphere.

Two kinds of pollutants

MIRAGE is especially significant because it focuses on both aerosols (airborne particles of dust, soot, and other pollutants) and gaseous pollutants (including ozone, nitrogen oxides, carbon monoxide, sulfur dioxide, and hydrocarbons and their oxidation products).

"In the past there have been air campaigns during which researchers have made lots of aerosol measurements, and other ones during which they’ve emphasized gas measurements," Madronich says. "The uniqueness of MIRAGE is that it brings them together, allowing us to study interactions between gases and aerosols."

Why Mexico City?

The researchers chose Mexico City for MIRAGE because it is the world’s third largest urban area, has some of the worst air quality in the world, and is situated in the tropics, as are most fast-growing megacities in developing nations.

Current computer models for studying air pollution were developed mainly for cities in industrialized nations, Madronich says. They don’t transfer well to megacities in the developing world, where people are more likely to burn coal and wood and drive vehicles that emit more harmful chemicals.

The field campaign will also gather information about aerosols, such as how long they endure in the atmosphere and how they affect clouds. These insights are useful to scientists who make computer models of global climate.

"The lifetime of organic aerosols may be longer than climate modelers have thought, and this could have a huge effect on climate," Madronich says.

Nicole Gordon | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>