Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers to Scrutinize Megacity Pollution During Mexico City Field Campaign

06.03.2006


A team of researchers from the National Center for Atmospheric Research (NCAR) and other institutions is heading to Mexico City to participate in one of the most complex field campaigns ever undertaken in atmospheric chemistry. From March 1 to 29, the team will make multiple research flights in the NSF/NCAR C-130 aircraft and operate ground instruments to investigate the chemical and physical transformation of air pollution as it flows downwind from Mexico City.


The NSF/NCAR C-130 will fly out of Veracruz, Mexico to intercept Mexico City’s pollution plume downwind. A unique array of sensing instruments on board will sample the gases and aerosols in the plume. A four-engine turboprop, the NSF/NCAR C-130 was built for military transport and adapted for research missions in the mid-1990s. (©UCAR, photo by Carlye Calvin)


Mexico City, the world’s third largest urban area, has some of the worst air quality in the world. (Photo courtesy Nancy A. Marley.)



The team’s goal is to assess the pollution’s impact on regional and global air quality, climate, and ecosystems. The results are expected to be applicable to megacities (cities with 10 million or more inhabitants) in other locations around the world.

"Mexico City’s pollution probably doesn’t have a global impact, but all urban areas together do, and the world is urbanizing," explains NCAR scientist Sasha Madronich, one of the project’s principal investigators. "If we can understand the pollution impacts of Mexico City, we can apply this new knowledge to other urban areas across the globe."


The project, called MIRAGE (Megacity Impacts of Regional and Global Environments), is led by NCAR in partnership with several U.S. universities and other organizations.

MIRAGE is one component of a set of simultaneous field campaigns collectively called Megacity Initiative: Local and Global Research Observations (MILAGRO). This international effort will observe and quantify air pollution emitted by Mexico City from multiple perspectives. Other components of MILAGRO are led by the U.S. Department of Energy, the Molina Center on Energy and the Environment, and NASA. As part of the broader effort, researchers from more than 60 institutions in the United States, Mexico, and several other nations will convene in Mexico City to coordinate aircraft and ground-based measurements, satellite observations, and computer modeling. The cost of the MILAGRO campaign is estimated to be more than $20 million, with the National Science Foundation contributing about $10 million. NSF is also NCAR’s primary sponsor.

NCAR researchers hope that data from MIRAGE will shed light on four broad questions:

  • How far downwind does Mexico City’s pollution plume extend?
  • How are the pollutants transformed by chemical reactions occurring downwind of the city?
  • How do the pollutants affect visibility, as well as regional and global climate?
  • How do the urban pollutants interact with pollutants from other sources, such as agricultural and forest fires?

"We’re not looking so much at pollution inside the city because that’s already fairly well known," Madronich says. "We’re looking at the outflow. For the first time we’ll have an idea of how much pollution is outside the city and be able to understand its full life cycle."

Because air pollution is complicated, both chemically and physically, and evolves over time and distance, scientists have traditionally faced difficulty in quantifying its components. The MIRAGE team will use aircraft, ground stations, and satellite observations to gather data on how Mexico City’s air pollution ages as it disperses in the first hours and days after emission.

Aircraft and instruments

Researchers based in Veracruz, located east of the capital on the Gulf of Mexico, will crisscross Mexico City’s pollution plume in the C-130 aircraft. Using a complex package of instruments, they’ll make multiple flights to sample the gases and aerosols that comprise the plume, which usually spreads northeast from the city toward the gulf.

Others will set up ground-based instruments at the Technical University of Tecamac, about 25 miles (40 kilometers) northeast of Mexico City. From there, they will also launch GPS radiosondes, which are instrument packages attached to helium balloons that send atmospheric measurements to the ground via radio. The radiosondes will make vertical profiles of winds, temperatures, and humidity from the ground through the lower stratosphere.

Two kinds of pollutants

MIRAGE is especially significant because it focuses on both aerosols (airborne particles of dust, soot, and other pollutants) and gaseous pollutants (including ozone, nitrogen oxides, carbon monoxide, sulfur dioxide, and hydrocarbons and their oxidation products).

"In the past there have been air campaigns during which researchers have made lots of aerosol measurements, and other ones during which they’ve emphasized gas measurements," Madronich says. "The uniqueness of MIRAGE is that it brings them together, allowing us to study interactions between gases and aerosols."

Why Mexico City?

The researchers chose Mexico City for MIRAGE because it is the world’s third largest urban area, has some of the worst air quality in the world, and is situated in the tropics, as are most fast-growing megacities in developing nations.

Current computer models for studying air pollution were developed mainly for cities in industrialized nations, Madronich says. They don’t transfer well to megacities in the developing world, where people are more likely to burn coal and wood and drive vehicles that emit more harmful chemicals.

The field campaign will also gather information about aerosols, such as how long they endure in the atmosphere and how they affect clouds. These insights are useful to scientists who make computer models of global climate.

"The lifetime of organic aerosols may be longer than climate modelers have thought, and this could have a huge effect on climate," Madronich says.

Nicole Gordon | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>