Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incineration as a fuel source

03.03.2006


Enormous benefit for humans and without harming the environment can be extracted from domestic waste, old car wheel casings, industrial wastes and even silt, that remain after cleaning sewage outflows. It transpires that all this can successfully be turned into light and heat when incinerated, under methodology, developed by scientists from Chernogolovka in the Moscow Region, staff from the Institute of Problems of Chemical Physics RAS. The scientists were aided by the International Science and Technology Centre and the Russian Fund for Fundamental Research. The research is headed by RAS Corresponding Member Georgi Manelis.



This technology has a rather complicated name – filtration combustion with superadiabatic warm-up. The essence of the development lies in the fact that all of the so-called pseudo-fuel is first transformed to gas in an airflow; then this gas is combusted. As a result we get the same light and heat for which to date it has been necessary to literally let natural gas, coal and oil go up in smoke, fuel reserves which are far from endless in supply.

Externally the main part of the installation is a vertical shaft furnace, filled with these waste products that have to be processed. From below the pipe is blasted with air. This is where the ash is poured in – the mineral residue that does not burn at all. From above, as necessary, new portions of what in a domestic sense you would not call fuel are added into the pipe; these include poor coal, for example, in which there is so little carbon that you cannot make then burn easily.


The particular feature of the installation is that the walls of the shaft furnace, the gasifier, do not allow even a little of the heat obtained from the combustion of the waste to disperse into the surrounding space. From below the front of smouldering rather than burning, air blows heated ash onto the lower sections of the pipe. As a result the temperature of the process becomes pretty high, superadiabatic, meaning it is greater than under regular heating in a closed space. And now it is sufficient for all the compounds which contain carbon atoms to either burn or be subjected to pyrolysis, as if splitting into pieces, which is what happens if there is insufficient oxygen for combustion. The soot from burning car wheel casings that we all know well are indeed the very same products of this pyrolysis; only in the installation devised by the scientists, they enter at the second stage of the reprocessing.

Thus, at the first stage gasification takes place in superadiabatic regime; in other words, the transformation of carbon-containing wastes into so-called generating gas. The molecules that make it up store a fair amount of heat and the non-combustible slag has already poured into the bottom of the furnace. A gas like this will combust wonderfully in a power-generating installation, giving the much needed heat and electricity.

“Our method has very high performance efficiency, almost 95%, and a record high ecological cleanliness,” explains Candidate of Physics and Mathematics Valery Steinberg, Head of Department of Combustion and Detonation of the Institute Problems of Chemical Physics RAS, where the basis of the technology was created. Such incineration, performed in phases, and the high temperatures facilitate the practical suppression of the formation of dioxins. Their content in the furnace gases, without any additional purification, amounts to ten-thousandths of a microgram per cubic metre of smoke; an excellent figure.”

What is also surprising is that the method is incredibly non-demanding in terms of the primary fuel. Naturally, the air supply regime and certain other parameters have to be selected for each specific type of waste that predominates in the combustible mass. However, under the new technology, almost everything burns: domestic rubbish, oil slime and oil-refinery wastes, wheel casings, plastic, just as wastes from the coal mining and coal refinery, pulp and paper, chemical and paint-varnish industries, providing us with heat and with light.

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/istc/sc.nsf/events/fuel-source

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>