Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incineration as a fuel source

03.03.2006


Enormous benefit for humans and without harming the environment can be extracted from domestic waste, old car wheel casings, industrial wastes and even silt, that remain after cleaning sewage outflows. It transpires that all this can successfully be turned into light and heat when incinerated, under methodology, developed by scientists from Chernogolovka in the Moscow Region, staff from the Institute of Problems of Chemical Physics RAS. The scientists were aided by the International Science and Technology Centre and the Russian Fund for Fundamental Research. The research is headed by RAS Corresponding Member Georgi Manelis.



This technology has a rather complicated name – filtration combustion with superadiabatic warm-up. The essence of the development lies in the fact that all of the so-called pseudo-fuel is first transformed to gas in an airflow; then this gas is combusted. As a result we get the same light and heat for which to date it has been necessary to literally let natural gas, coal and oil go up in smoke, fuel reserves which are far from endless in supply.

Externally the main part of the installation is a vertical shaft furnace, filled with these waste products that have to be processed. From below the pipe is blasted with air. This is where the ash is poured in – the mineral residue that does not burn at all. From above, as necessary, new portions of what in a domestic sense you would not call fuel are added into the pipe; these include poor coal, for example, in which there is so little carbon that you cannot make then burn easily.


The particular feature of the installation is that the walls of the shaft furnace, the gasifier, do not allow even a little of the heat obtained from the combustion of the waste to disperse into the surrounding space. From below the front of smouldering rather than burning, air blows heated ash onto the lower sections of the pipe. As a result the temperature of the process becomes pretty high, superadiabatic, meaning it is greater than under regular heating in a closed space. And now it is sufficient for all the compounds which contain carbon atoms to either burn or be subjected to pyrolysis, as if splitting into pieces, which is what happens if there is insufficient oxygen for combustion. The soot from burning car wheel casings that we all know well are indeed the very same products of this pyrolysis; only in the installation devised by the scientists, they enter at the second stage of the reprocessing.

Thus, at the first stage gasification takes place in superadiabatic regime; in other words, the transformation of carbon-containing wastes into so-called generating gas. The molecules that make it up store a fair amount of heat and the non-combustible slag has already poured into the bottom of the furnace. A gas like this will combust wonderfully in a power-generating installation, giving the much needed heat and electricity.

“Our method has very high performance efficiency, almost 95%, and a record high ecological cleanliness,” explains Candidate of Physics and Mathematics Valery Steinberg, Head of Department of Combustion and Detonation of the Institute Problems of Chemical Physics RAS, where the basis of the technology was created. Such incineration, performed in phases, and the high temperatures facilitate the practical suppression of the formation of dioxins. Their content in the furnace gases, without any additional purification, amounts to ten-thousandths of a microgram per cubic metre of smoke; an excellent figure.”

What is also surprising is that the method is incredibly non-demanding in terms of the primary fuel. Naturally, the air supply regime and certain other parameters have to be selected for each specific type of waste that predominates in the combustible mass. However, under the new technology, almost everything burns: domestic rubbish, oil slime and oil-refinery wastes, wheel casings, plastic, just as wastes from the coal mining and coal refinery, pulp and paper, chemical and paint-varnish industries, providing us with heat and with light.

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/istc/sc.nsf/events/fuel-source

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>