Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incineration as a fuel source

03.03.2006


Enormous benefit for humans and without harming the environment can be extracted from domestic waste, old car wheel casings, industrial wastes and even silt, that remain after cleaning sewage outflows. It transpires that all this can successfully be turned into light and heat when incinerated, under methodology, developed by scientists from Chernogolovka in the Moscow Region, staff from the Institute of Problems of Chemical Physics RAS. The scientists were aided by the International Science and Technology Centre and the Russian Fund for Fundamental Research. The research is headed by RAS Corresponding Member Georgi Manelis.



This technology has a rather complicated name – filtration combustion with superadiabatic warm-up. The essence of the development lies in the fact that all of the so-called pseudo-fuel is first transformed to gas in an airflow; then this gas is combusted. As a result we get the same light and heat for which to date it has been necessary to literally let natural gas, coal and oil go up in smoke, fuel reserves which are far from endless in supply.

Externally the main part of the installation is a vertical shaft furnace, filled with these waste products that have to be processed. From below the pipe is blasted with air. This is where the ash is poured in – the mineral residue that does not burn at all. From above, as necessary, new portions of what in a domestic sense you would not call fuel are added into the pipe; these include poor coal, for example, in which there is so little carbon that you cannot make then burn easily.


The particular feature of the installation is that the walls of the shaft furnace, the gasifier, do not allow even a little of the heat obtained from the combustion of the waste to disperse into the surrounding space. From below the front of smouldering rather than burning, air blows heated ash onto the lower sections of the pipe. As a result the temperature of the process becomes pretty high, superadiabatic, meaning it is greater than under regular heating in a closed space. And now it is sufficient for all the compounds which contain carbon atoms to either burn or be subjected to pyrolysis, as if splitting into pieces, which is what happens if there is insufficient oxygen for combustion. The soot from burning car wheel casings that we all know well are indeed the very same products of this pyrolysis; only in the installation devised by the scientists, they enter at the second stage of the reprocessing.

Thus, at the first stage gasification takes place in superadiabatic regime; in other words, the transformation of carbon-containing wastes into so-called generating gas. The molecules that make it up store a fair amount of heat and the non-combustible slag has already poured into the bottom of the furnace. A gas like this will combust wonderfully in a power-generating installation, giving the much needed heat and electricity.

“Our method has very high performance efficiency, almost 95%, and a record high ecological cleanliness,” explains Candidate of Physics and Mathematics Valery Steinberg, Head of Department of Combustion and Detonation of the Institute Problems of Chemical Physics RAS, where the basis of the technology was created. Such incineration, performed in phases, and the high temperatures facilitate the practical suppression of the formation of dioxins. Their content in the furnace gases, without any additional purification, amounts to ten-thousandths of a microgram per cubic metre of smoke; an excellent figure.”

What is also surprising is that the method is incredibly non-demanding in terms of the primary fuel. Naturally, the air supply regime and certain other parameters have to be selected for each specific type of waste that predominates in the combustible mass. However, under the new technology, almost everything burns: domestic rubbish, oil slime and oil-refinery wastes, wheel casings, plastic, just as wastes from the coal mining and coal refinery, pulp and paper, chemical and paint-varnish industries, providing us with heat and with light.

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/istc/sc.nsf/events/fuel-source

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>