Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient greenhouse emissions—possible lessons for modern climate

17.02.2006


Humans are performing a high-stakes climate experiment by burning fossil fuels that release heat-trapping greenhouse gases into the atmosphere. The outcome of that experiment is uncertain and computer models can do only so much to predict the future.


So scientists have been paying increasing attention to the geologic past, searching for possible lessons from ancient episodes of warming driven by natural processes which also might include emission of greenhouse gases. The research, discussed in a symposium at the 2006 Annual Meeting of the American Association for the Advancement of Science (AAAS) in St. Louis, suggests there could be some dramatic, potentially abrupt changes in store.

"There’s an awful lot of knowledge we can gain from past climates," says Mark Chandler, an atmospheric scientist at Columbia University. He has been studying a warming episode 3 million years ago during a period called the Middle Pliocene.

"If you go back in time, you have to go back to the middle Pliocene before you get to see a climate that was as warm as what we are going to see in the next 50 to 100 years in our own time," Chandler said.



Ocean temperatures rose substantially during that warming episode--as much as 7 to 9 degrees Celsius (about 12 to 16 degrees Fahrenheit) in some areas of the North Atlantic. But scientists are puzzled. The carbon dioxide levels at that time--inferred from geochemical data--were roughly comparable to our own time, approaching 400 parts per million. Today’s computer models do not predict the sort of temperature rises that occurred during the middle Pliocene, Chandler said.

That raises the possibility that human-induced global warming could trigger even more rapid climate changes--- rising sea levels, melting ice caps, disturbed agricultural regions--- than currently projected.

Scientists have been studying various other periods of rapid warming, one interval about 55 million years ago, at the very beginning of the Eocene geological period. At that time, temperatures rose rapidly by as much as 10 degrees C (18 degrees F) at high latitudes in the Arctic and Antarctic. Tropical oceans and deep ocean waters warmed by 4 to 6 degrees C (about 7 to 11 degrees F).

There were dramatic effects on plants and animals during the event, called the Paleocene-Eocene Thermal Maximum (PETM). Scott Wing of the Smithsonian Museum of Natural History and his colleagues reported recently in the journal Science that some plants, including relatives of poinsettia and sumac, migrated from the Gulf Coast to Wyoming, a distance of about 1,000 miles, in 10,000 years or less. Those conclusions were drawn from an examination of plant fossils from the Bighorn Basin of northwestern Wyoming.

Scientists think that the fast-changing climate at the beginning of the Eocene was driven by a natural release of carbon-containing greenhouse gases analogous to what is occurring with the release of carbon dioxide and other gases since the start of the industrial revolution. "What we are looking at is an occurrence that is similar to what we see in fossil fuel burning," said Ellen Thomas, a Yale University paleoclimate scientist.

The natural trigger for the PETM warming episode remains a subject of intense debate, but Thomas said a leading hypothesis involves the release of huge amounts of methane gas that had been trapped in ice compounds called methane hydrates. Methane produces less carbon dioxide than coal when it is burned as a fuel, and it is a powerful greenhouse gas. Most methane hydrates in the present oceans are frozen in sediments in the deep oceans, but some are associated with permafrost soils in the Arctic. Release of the methane can occur through natural processes, including underwater landslides or other seismic events, or by warming of ocean waters. Once released, the gas can induce atmospheric warming that has a positive feedback effect, releasing still more gas as ocean waters and permafrost regions begin to warm. The process can reach a tipping point where it starts to rapidly accelerate.

"You don’t want to exaggerate, you don’t want to sound like a doomsayer," says Thomas. "But if the hydrates hypothesis is valid, there could be nasty feedbacks in the climate system." Climate change in the next few centuries may not be a smooth, linear process. Warming induced by human-caused emissions of carbon dioxide and other gases could, in turn, trigger release of methane from natural sources in the Arctic permafrost and elsewhere.

"You may get a runaway greenhouse effect with dramatic results," Thomas said. "Once the threshold is crossed, the climate may change very rapidly but recovery will be much slower, as we see in records from the Paleocene-Eocene Thermal Maxiumum, where recovery took about 100,000 years."

Chandler said the Pliocene event 3 million years ago also gives cause for concern. "You have to take some warning from the Pliocene," he said. Even in the absence of huge amounts of carbon dioxide as a forcing mechanism, he said, there still appear to be trigger points that, once passed, can produce rapid warming through feedbacks such as changes in sea ice and the reflectivity of the Earth’s surface.

Scientists have been looking at techniques for easing the impact of greenhouse gases, including schemes to sequester industrial emissions of carbon dioxide in deep ocean waters. But Chandler said his study of paleoclimates suggests that mitigation of global warming--once it is well underway--may be difficult. "I don’t think you can reverse things as easily as some suggest," Chandler said.

Earl Lane | EurekAlert!
Further information:
http://www.aaas.org

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>