Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient greenhouse emissions—possible lessons for modern climate

17.02.2006


Humans are performing a high-stakes climate experiment by burning fossil fuels that release heat-trapping greenhouse gases into the atmosphere. The outcome of that experiment is uncertain and computer models can do only so much to predict the future.


So scientists have been paying increasing attention to the geologic past, searching for possible lessons from ancient episodes of warming driven by natural processes which also might include emission of greenhouse gases. The research, discussed in a symposium at the 2006 Annual Meeting of the American Association for the Advancement of Science (AAAS) in St. Louis, suggests there could be some dramatic, potentially abrupt changes in store.

"There’s an awful lot of knowledge we can gain from past climates," says Mark Chandler, an atmospheric scientist at Columbia University. He has been studying a warming episode 3 million years ago during a period called the Middle Pliocene.

"If you go back in time, you have to go back to the middle Pliocene before you get to see a climate that was as warm as what we are going to see in the next 50 to 100 years in our own time," Chandler said.



Ocean temperatures rose substantially during that warming episode--as much as 7 to 9 degrees Celsius (about 12 to 16 degrees Fahrenheit) in some areas of the North Atlantic. But scientists are puzzled. The carbon dioxide levels at that time--inferred from geochemical data--were roughly comparable to our own time, approaching 400 parts per million. Today’s computer models do not predict the sort of temperature rises that occurred during the middle Pliocene, Chandler said.

That raises the possibility that human-induced global warming could trigger even more rapid climate changes--- rising sea levels, melting ice caps, disturbed agricultural regions--- than currently projected.

Scientists have been studying various other periods of rapid warming, one interval about 55 million years ago, at the very beginning of the Eocene geological period. At that time, temperatures rose rapidly by as much as 10 degrees C (18 degrees F) at high latitudes in the Arctic and Antarctic. Tropical oceans and deep ocean waters warmed by 4 to 6 degrees C (about 7 to 11 degrees F).

There were dramatic effects on plants and animals during the event, called the Paleocene-Eocene Thermal Maximum (PETM). Scott Wing of the Smithsonian Museum of Natural History and his colleagues reported recently in the journal Science that some plants, including relatives of poinsettia and sumac, migrated from the Gulf Coast to Wyoming, a distance of about 1,000 miles, in 10,000 years or less. Those conclusions were drawn from an examination of plant fossils from the Bighorn Basin of northwestern Wyoming.

Scientists think that the fast-changing climate at the beginning of the Eocene was driven by a natural release of carbon-containing greenhouse gases analogous to what is occurring with the release of carbon dioxide and other gases since the start of the industrial revolution. "What we are looking at is an occurrence that is similar to what we see in fossil fuel burning," said Ellen Thomas, a Yale University paleoclimate scientist.

The natural trigger for the PETM warming episode remains a subject of intense debate, but Thomas said a leading hypothesis involves the release of huge amounts of methane gas that had been trapped in ice compounds called methane hydrates. Methane produces less carbon dioxide than coal when it is burned as a fuel, and it is a powerful greenhouse gas. Most methane hydrates in the present oceans are frozen in sediments in the deep oceans, but some are associated with permafrost soils in the Arctic. Release of the methane can occur through natural processes, including underwater landslides or other seismic events, or by warming of ocean waters. Once released, the gas can induce atmospheric warming that has a positive feedback effect, releasing still more gas as ocean waters and permafrost regions begin to warm. The process can reach a tipping point where it starts to rapidly accelerate.

"You don’t want to exaggerate, you don’t want to sound like a doomsayer," says Thomas. "But if the hydrates hypothesis is valid, there could be nasty feedbacks in the climate system." Climate change in the next few centuries may not be a smooth, linear process. Warming induced by human-caused emissions of carbon dioxide and other gases could, in turn, trigger release of methane from natural sources in the Arctic permafrost and elsewhere.

"You may get a runaway greenhouse effect with dramatic results," Thomas said. "Once the threshold is crossed, the climate may change very rapidly but recovery will be much slower, as we see in records from the Paleocene-Eocene Thermal Maxiumum, where recovery took about 100,000 years."

Chandler said the Pliocene event 3 million years ago also gives cause for concern. "You have to take some warning from the Pliocene," he said. Even in the absence of huge amounts of carbon dioxide as a forcing mechanism, he said, there still appear to be trigger points that, once passed, can produce rapid warming through feedbacks such as changes in sea ice and the reflectivity of the Earth’s surface.

Scientists have been looking at techniques for easing the impact of greenhouse gases, including schemes to sequester industrial emissions of carbon dioxide in deep ocean waters. But Chandler said his study of paleoclimates suggests that mitigation of global warming--once it is well underway--may be difficult. "I don’t think you can reverse things as easily as some suggest," Chandler said.

Earl Lane | EurekAlert!
Further information:
http://www.aaas.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>