Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sonar Method Offers Way to Assess Health of Squid Fisheries

08.02.2006


Scientists devise technique to detect squid egg clusters on the seafloor


California’s $30-million-a-year squid fishery has quadrupled in the past decade, but until now there has been no way to assess the continuing viability of squid stocks. Scientists have demonstrated new sonar methods to detect egg clusters of squid (Loligo opalescens), pictured above, off Monterey, California. (Photo by Roger B. Hanlon, Marine Biological Laboratory)


Squid return annually to spawn and lay clusters of finger-sized egg capsules on the seafloor off Monterey, California. (Photo courtesy Roger B. Hanlon, Marine Biological Laboratory)



California’s $30-million-a-year squid fishery has quadrupled in the past decade, but until now there has been no way to assess the continuing viability of squid stocks. A multi-institutional team of scientists this month reported a new sonar technique to locate squid egg clusters in the murky depths, offering a window onto next year’s potential squid population in its nursery.

The scientists demonstrated the new sonar methods off the coast of Monterey, California, where fishermen harvest squid in April and May as the squid return annually to spawn and lay clusters of finger-sized egg capsules on the seafloor. The scientists learned how to distinguish subtle sound signals reflected off gelatinous egg clusters and the adjacent sandy seafloor, and they could detect egg clusters less than 20 inches (0.5 meters) across.


“This method provides an efficient way to map distributions and estimate abundances of squid eggs and monitor them year to year to get a census for next year’s population,” said Kenneth G. Foote, a marine acoustics expert at Woods Hole Oceanographic Institution (WHOI) in Massachusetts and lead author of an article published in the February Journal of the Acoustical Society of America. “It has immediate potential to give resource managers sound scientific information to make decisions on how to sustain the fishery. Otherwise, they’re just guessing.”

The scientific team combined the expertise of Foote; Roger T. Hanlon, a biologist at the neighboring Marine Biological Laboratory (MBL) in Woods Hole and a leading authority on squid behavior; and Pat J. Iampietro and Rikk G. Kvitek, seafloor mapping experts at California State University (CSU), Monterey Bay. The research was funded by the Sea Grant Essential Fish Habitat Program.

The researchers developed and tested the new sonar methods off Monterey, where squid fishing begun in the 1860s has intensified as other fisheries have declined and the market for squid has increased, Hanlon said. Every spring squid (Loligo opalescens) return to spawn a few hundred yards offshore, near Cannery Row, in waters 65 to 200 feet (20 to 60 meters) deep. They deposit capsules, each containing 150 to 300 embryos, which are attached to each other, first forming small clumps called mops that later cluster into egg beds up to several meters in diameter. The primary spawning ground in Monterey covers an area of about four square miles (10 square kilometers).

Surveying the underwater squid nursery with divers or underwater cameras is too difficult, time-consuming, and expensive, the scientists said. Using the new sonar methods, the entire Monterey spawning area could be surveyed in less than 40 hours at relatively low cost, with a suitably equipped boat towing a sidescan sonar.

Solving the problem first required a way to detect squid eggs. Hanlon approached Foote, who was game to try but not initially optimistic. “You have to be able to distinguish weak signals echoing off small targets from powerful signals echoing off much larger targets,” Foote said.

The team conducted experiments by towing a sidescan sonar with the CSU Seafloor Mapping Lab’s research vessel MacGinitie. They tested different ways to tune sound wave frequencies, adjust the angle of the sonar, and tow it at various speeds and heights off the seafloor—all in an effort to optimize signals reflected back from the egg clusters. Foote analyzed the raw acoustic data to tease out signals representing egg clusters and seafloor and translated the sound data into images.

The results were seafloor maps clearly showing a characteristic mottling pattern—squid egg clusters—distributed on the seafloor. Underwater cameras confirmed that the sonar images represented egg clusters.

Hanlon said the sonar method provides a crucial tool for estimating how well squid are reproducing, learning more about squid behavior, and identifying ways to monitor a valuable fishery while protecting a species that is a key link in marine food chain. Squid are a staple in the diets of 19 fish, nine bird, and two marine mammal species. They are also a popular restaurant item as calamari.

Since fishing usually commences as soon as squid appear nearshore in Monterey Bay, fishermen may be catching large numbers of squid before they have a chance to spawn, Hanlon said.

“Fishing while squid are actively mating and laying eggs can remove certain sizes and sexes of squid schools and interfere with complex sexual selection behaviors that are crucial to the gene flow and vigor of the population,” Hanlon said. “If we can detect when the egg clusters appear, then wait a few days for the squid to spawn, we can help ensure that squid can complete their mating cycle. That way, they will lay enough eggs to provide squid to fish next year, and the squid gene pool will continue to flow by natural, not unnatural, selection.”

“We aim for this technique to help create a win-win situation,” he said. “Fishermen harvest the same amount of calamari this year and in future years, and meanwhile we don’t interfere with squid population genetics and have enough squid for the ocean, too.”

Foote and Hanlon said the sonar techniques could be adapted and applied to more effectively manage other squid fisheries around the world, including major fisheries in South Africa, Japan, the Falkland Islands, and perhaps on the United States East Coast.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu/mr/pr.do?id=10206
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>