Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Of mice, men, trees and the global carbon cycle


A team led by a University of Minnesota researcher has found a universal rule that regulates the metabolism of plants of all kinds and sizes and that may also offer a key to calculating their carbon dioxide emissions, a number that must be known precisely in order to construct valid models of global carbon dioxide cycling. Emissions of the gas occur in both plants and animals through the process of respiration; Peter Reich, a professor of forest resources, and his colleagues have found that plant emissions can be deduced from the nitrogen content of any plant. The study also reveals that the respiration, or metabolic, rates of plants and animals follow different laws of scaling with respect to body size. The work will be published in the Jan. 26 issue of the journal Nature.

In revealing nitrogen content as the key to plant metabolic rates, the work uncovered a fundamental difference between plants and animals in how their metabolism varies with size. The larger an animal, the slower its metabolism on a per-weight basis. Thus, although an elephant burns many more calories per hour than a mouse, the mouse has a much higher rate per pound of body weight. An elephant with the same rate per pound as a mouse would generate so much heat it would have serious problems maintaining body temperature and eating fast enough to keep up. Instead of a one-to-one ratio between body size and metabolic rate, as an animal’s body weight quadruples, its respiration rate only triples.

In contrast, when Reich and his colleagues studied 500 plants from 43 species, they found that within a wide range of plant sizes, a quadrupling of weight leads to a quadrupling of respiration rate. The important variable was nitrogen content: The more nitrogen in a plant, the more it respired and the more carbon dioxide the plant emitted. Similarly, if two plants were the same size but had different concentrations of nitrogen in their tissues, the one with the higher nitrogen concentration had a higher respiration rate. Conversely, a big plant and a small plant with the same total nitrogen content would put out equivalent amounts of carbon dioxide over the same time period.

The universal rule linking plant metabolism to nitrogen can also assist efforts to measure the global carbon cycle. Through the process of photosynthesis, plants absorb and store more carbon dioxide than they emit through respiration. But global plant respiration is a huge variable that must be taken into account.

"If we estimate the nitrogen content of plants, we can model their metabolic rates, helping us to better assess the global plant metabolic rate," said Reich, a professor in the university’s College of Natural Resources. "The amounts of carbon dioxide given off by plants is one of the weak spots in models of global carbon cycling."

To predict how fast atmospheric carbon dioxide will rise in the future, it is important to know all the sources that emit the gas and all the sources that soak it up. The amount of carbon dioxide in the atmosphere is well known, as is the rate of emissions from fossil fuel burning. The rate of photosynthesis, in which carbon dioxide is absorbed and stored as plant tissue, is difficult to measure but can be estimated globally from satellites, based on the visible plant cover. The plant cover indicates how much light the plants will intercept. Even harder to calculate are the global amounts of carbon dioxide released by living, respiring plants; the amounts released as plants are decomposed by microbes; and the amounts being absorbed and emitted by oceans.

"If all the carbon dioxide emitted from fossil fuel burning were to stay in the atmosphere, its rate of accumulation in the atmosphere would be two-and-a-half times as fast as it actually is and climate would change two-and-a-half times faster," said Reich. "Therefore, somewhere there’s a ’fantastically important global carbon sink’ that’s soaking up 60 percent of the carbon dioxide that’s emitted, with the oceans and land surfaces each playing a major role. However, researchers have estimated that plant respiration releases five to 10 times as much carbon dioxide as fossil fuel burning. It’s crucial, therefore, to know the amount of plant emissions more accurately because that number makes a huge difference in calculating how much of the gas is being absorbed from the atmosphere and staying in the biosphere. This in turn will help scientists figure out what the carbon sink is and what its capacity might be."

Professor Peter Reich | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>