Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice, men, trees and the global carbon cycle

26.01.2006


A team led by a University of Minnesota researcher has found a universal rule that regulates the metabolism of plants of all kinds and sizes and that may also offer a key to calculating their carbon dioxide emissions, a number that must be known precisely in order to construct valid models of global carbon dioxide cycling. Emissions of the gas occur in both plants and animals through the process of respiration; Peter Reich, a professor of forest resources, and his colleagues have found that plant emissions can be deduced from the nitrogen content of any plant. The study also reveals that the respiration, or metabolic, rates of plants and animals follow different laws of scaling with respect to body size. The work will be published in the Jan. 26 issue of the journal Nature.



In revealing nitrogen content as the key to plant metabolic rates, the work uncovered a fundamental difference between plants and animals in how their metabolism varies with size. The larger an animal, the slower its metabolism on a per-weight basis. Thus, although an elephant burns many more calories per hour than a mouse, the mouse has a much higher rate per pound of body weight. An elephant with the same rate per pound as a mouse would generate so much heat it would have serious problems maintaining body temperature and eating fast enough to keep up. Instead of a one-to-one ratio between body size and metabolic rate, as an animal’s body weight quadruples, its respiration rate only triples.

In contrast, when Reich and his colleagues studied 500 plants from 43 species, they found that within a wide range of plant sizes, a quadrupling of weight leads to a quadrupling of respiration rate. The important variable was nitrogen content: The more nitrogen in a plant, the more it respired and the more carbon dioxide the plant emitted. Similarly, if two plants were the same size but had different concentrations of nitrogen in their tissues, the one with the higher nitrogen concentration had a higher respiration rate. Conversely, a big plant and a small plant with the same total nitrogen content would put out equivalent amounts of carbon dioxide over the same time period.


The universal rule linking plant metabolism to nitrogen can also assist efforts to measure the global carbon cycle. Through the process of photosynthesis, plants absorb and store more carbon dioxide than they emit through respiration. But global plant respiration is a huge variable that must be taken into account.

"If we estimate the nitrogen content of plants, we can model their metabolic rates, helping us to better assess the global plant metabolic rate," said Reich, a professor in the university’s College of Natural Resources. "The amounts of carbon dioxide given off by plants is one of the weak spots in models of global carbon cycling."

To predict how fast atmospheric carbon dioxide will rise in the future, it is important to know all the sources that emit the gas and all the sources that soak it up. The amount of carbon dioxide in the atmosphere is well known, as is the rate of emissions from fossil fuel burning. The rate of photosynthesis, in which carbon dioxide is absorbed and stored as plant tissue, is difficult to measure but can be estimated globally from satellites, based on the visible plant cover. The plant cover indicates how much light the plants will intercept. Even harder to calculate are the global amounts of carbon dioxide released by living, respiring plants; the amounts released as plants are decomposed by microbes; and the amounts being absorbed and emitted by oceans.

"If all the carbon dioxide emitted from fossil fuel burning were to stay in the atmosphere, its rate of accumulation in the atmosphere would be two-and-a-half times as fast as it actually is and climate would change two-and-a-half times faster," said Reich. "Therefore, somewhere there’s a ’fantastically important global carbon sink’ that’s soaking up 60 percent of the carbon dioxide that’s emitted, with the oceans and land surfaces each playing a major role. However, researchers have estimated that plant respiration releases five to 10 times as much carbon dioxide as fossil fuel burning. It’s crucial, therefore, to know the amount of plant emissions more accurately because that number makes a huge difference in calculating how much of the gas is being absorbed from the atmosphere and staying in the biosphere. This in turn will help scientists figure out what the carbon sink is and what its capacity might be."

Professor Peter Reich | EurekAlert!
Further information:
http://www.umn.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>