Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fewer fish eggs, smaller fish result from over-fishing

23.01.2006


UCR graduate student leads research showing how evolution slows recovery of fish population


The figure shows the decrease in body size in Atlantic silverside as found by a research team led by UCR graduate student Matthew Walsh. The silverside, having been reared for five generations in laboratory experiments, are all the same age. The fish shown here are from the fifth generation. The fish on the left are from populations from which large individuals were harvested over five generations; the fish in the middle are from populations from which fish were harvested at random over five generations; and the fish on the right are from populations from which only small fish were harvested over five generations. Photo credit: M. Walsh.



The practice of harvesting the largest individuals from a fish population introduces genetic changes that harm the overall fish population, a UC Riverside graduate student and colleagues have determined. Removing the large fish over several generations of fish causes the remaining fish in the populations to become progressively smaller, have fewer and smaller eggs with lower survival and growth, and have lower foraging and feeding rates, the researchers report.

“We have shown for the first time that many traits correlated with fish body-size may be evolving in response to intense fishing pressure,” said Matthew R. Walsh, a graduate student in UCR’s Department of Biology, who led the research project. “Our experiment is the only one to simulate the evolutionary impacts of harvesting in a laboratory setting.”


Study results will appear in the February issue of Ecology Letters.

Focusing on the Atlantic silverside, a commercially exploited fish commonly found along the east coast of North America, the researchers conducted harvesting experiments under a variety of regimens. They reared the fish for five generations, selecting out the largest individuals from each generation. They then evaluated multiple traits, such as body size and the number of eggs, in fish from the fifth generation.

“We found that removing the large fish in each generation, as in most fisheries, caused declines in many traits spanning the life history, physiology and behavior of this marine fish,” said Walsh, the first author of the paper. “We know that commercially exploited populations of fish often are slow to recover when fishing pressure is reduced. Our research indicates that the over-harvested fish stocks are slow to rebound because fishing selects for evolutionary changes in the life history of the fish. As a result, to effectively manage exploited fisheries, the impacts of these genetic changes must be considered and accounted for. Because the changes in the fish are genetic, they don’t immediately go away when fishing ceases.”

Walsh came to UCR in fall 2004, where he is working toward a doctoral degree under the advisement of David Reznick, professor of biology. The research on the Atlantic silverside was done in 2002 while Walsh was a graduate student at Stony Brook University, New York, from where he obtained his master’s degree in marine and atmospheric sciences in 2003.

Besides Walsh, Stephan B. Munch and David O. Conover of Stony Brook University; and Susumu Chiba of the Tokyo University of Agriculture, Japan, collaborated on the study, which was funded by the New York Sea Grant, the National Science Foundation, and the Pew Institute for Ocean Science of the Pew Charitable Trusts.

The University of California, Riverside is a major research institution. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of more than 16,600, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>