Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fewer fish eggs, smaller fish result from over-fishing

23.01.2006


UCR graduate student leads research showing how evolution slows recovery of fish population


The figure shows the decrease in body size in Atlantic silverside as found by a research team led by UCR graduate student Matthew Walsh. The silverside, having been reared for five generations in laboratory experiments, are all the same age. The fish shown here are from the fifth generation. The fish on the left are from populations from which large individuals were harvested over five generations; the fish in the middle are from populations from which fish were harvested at random over five generations; and the fish on the right are from populations from which only small fish were harvested over five generations. Photo credit: M. Walsh.



The practice of harvesting the largest individuals from a fish population introduces genetic changes that harm the overall fish population, a UC Riverside graduate student and colleagues have determined. Removing the large fish over several generations of fish causes the remaining fish in the populations to become progressively smaller, have fewer and smaller eggs with lower survival and growth, and have lower foraging and feeding rates, the researchers report.

“We have shown for the first time that many traits correlated with fish body-size may be evolving in response to intense fishing pressure,” said Matthew R. Walsh, a graduate student in UCR’s Department of Biology, who led the research project. “Our experiment is the only one to simulate the evolutionary impacts of harvesting in a laboratory setting.”


Study results will appear in the February issue of Ecology Letters.

Focusing on the Atlantic silverside, a commercially exploited fish commonly found along the east coast of North America, the researchers conducted harvesting experiments under a variety of regimens. They reared the fish for five generations, selecting out the largest individuals from each generation. They then evaluated multiple traits, such as body size and the number of eggs, in fish from the fifth generation.

“We found that removing the large fish in each generation, as in most fisheries, caused declines in many traits spanning the life history, physiology and behavior of this marine fish,” said Walsh, the first author of the paper. “We know that commercially exploited populations of fish often are slow to recover when fishing pressure is reduced. Our research indicates that the over-harvested fish stocks are slow to rebound because fishing selects for evolutionary changes in the life history of the fish. As a result, to effectively manage exploited fisheries, the impacts of these genetic changes must be considered and accounted for. Because the changes in the fish are genetic, they don’t immediately go away when fishing ceases.”

Walsh came to UCR in fall 2004, where he is working toward a doctoral degree under the advisement of David Reznick, professor of biology. The research on the Atlantic silverside was done in 2002 while Walsh was a graduate student at Stony Brook University, New York, from where he obtained his master’s degree in marine and atmospheric sciences in 2003.

Besides Walsh, Stephan B. Munch and David O. Conover of Stony Brook University; and Susumu Chiba of the Tokyo University of Agriculture, Japan, collaborated on the study, which was funded by the New York Sea Grant, the National Science Foundation, and the Pew Institute for Ocean Science of the Pew Charitable Trusts.

The University of California, Riverside is a major research institution. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of more than 16,600, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>