Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Post-Katrina: Lead in disturbed soil may pose heightened health risk

15.12.2005


Unsafe levels of lead have been found in soil and sediments left behind in New Orleans following Hurricane Katrina and could pose a heightened health threat to returning residents, particularly children, according to a new study published in the American Chemical Society’s journal Environmental Science & Technology. In some soil samples collected from the area, lead levels were as much as two-thirds higher than what the U.S. Environmental Protection Agency considers safe, according to researchers at Texas Tech University.



High concentrations of lead in the city’s soil have previously been reported by others, but lead generally remains embedded in the soil and does not easily come in contact with people unless disturbed, says study leader Steven M. Presley, Ph.D., an environmental toxicologist at Texas Tech in Lubbock. He says that severe flooding may have loosened large amounts of embedded lead and caused it to be deposited on soil surfaces, where exposure to lead particles is more likely, either through skin contact or the inhalation of aerosolized particles. Lead exposure is a particular health concern among children because it can impair the nervous system and cause developmental problems.

Although lead is the biggest health concern, the scientists also found concentrations of aldrin (an insecticide), arsenic, and seven semivolatile organic compounds that exceeded EPA Region VI safe levels and are on EPA’s list of known or suspected human carcinogens. In all, the researchers analyzed the sediment and soil samples for 26 metals and more than 90 semi-volatile compounds.


In addition to sediment and soil samples, the researchers also tested water and animal tissues following the flood. Other contaminants found among samples include high levels of iron, several banned pesticides and pathogenic bacteria, but the researchers say that concentrations of most of these contaminants were unlikely to pose an immediate human health threat. The peer-reviewed study, which represents one of the most detailed environmental sampling efforts to date following the flooding caused by Katrina, will appear in the Jan. 15 issue of ES&T.

"The purpose of this study is to gather more extensive samples and establish baseline data upon which to evaluate the long-term environmental impact of the storm," says Presley. "It may take years before we really know the full extent of the human health risks and wildlife impact from the Katrina contaminants, but this is an important step."

The researcher cautions that this study alone won’t answer the much debated question of whether it is safe to return to the area. Nonetheless, says Presley, people should be made aware of the contaminants that are present and take appropriate cleanup measures to minimize the potential health risks. For the current study, the research team obtained sediment, soil, water and animal tissue samples over a three-day period (Sept. 16-18) from across a broad cross-section of the city 18 days after the hurricane struck and after most of the water had been pumped from the city. The sampling included 14 different sites in the New Orleans area and focused mainly on the sediment and soil.

Floodwater samples taken at some sites showed extremely high levels of bacteria, particularly Aeromonas hydrophila, a little known human pathogen that can cause diarrhea and wound infections. This is the first time that Aeromonas has been detected in the Katrina floodwaters, Presley says. Animal tissues sampled, including dead snakes and an alligator, also contained multiple metals and pesticides, but these levels were generally within an expected range and not likely to be caused by the hurricane, the researchers say. Of the 47 mosquito specimens collected in the study area, all tested negative for West Nile Virus and St. Louis Encephalitis, says Presley. But he cautions that virus-transmitting mosquito populations might increase in the spring and summer.

The researchers are planning to expand their sampling study to include additional cross-sections of the city, Presley says. The Institute of Environmental and Human Health at Texas Tech University and the Patent & Trademark Institute of America provided funding for this study.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>