Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles could damage plant life

23.11.2005


A nanoparticle commonly used in industry could have a damaging effect on plant life, according to a report by an environmental scientist at New Jersey Institute of Technology (NJIT).



The report, published in a recent issue of "Toxicology Letters," shows that nanoparticles of alumina (aluminum oxide) slowed the growth of roots in five species of plants -- corn, cucumber, cabbage, carrot and soybean. Alumina nanoparticles are commonly used in scratch-resistant transparent coatings, sunscreen lotions that provide transparent-UV protection and environmental catalysts that reduce pollution, said Daniel J. Watts, PhD, the lead author of the study.

"Before this study there was an assumption that nanoparticles had no effect on plants," said Watts, executive director of the York Center for Environmental Engineering and Science and Panasonic Chair in Sustainability at NJIT. "This study makes the observation that seedlings can interact with nanoparticles such as alumina, which can have a harmful effect on seedlings and perhaps stunt the growth of plants. "Other nanoparticles included in the study, such as silica, did not show this effect," Watts added. He did the study with Ling Yang, a doctoral student who recently graduated from NJIT.


The authors conducted the study by allowing seeds to germinate on wet filter paper in Petri dishes, after which they added known quantities of nano-sized alumina suspended in water. The control portion of the experiment was treated only with water, and the authors observed the experiment for seven days. During that time, they measured the differences in the growth of the plants’ roots, which were shown to be statistically significant.

"We suppose that the surface characteristics of the nanoparticles played an important role in slowing the growth of the roots," said Watts. "The smaller the particle, the larger is the total amount of surface area per unit weight. So the smaller you make the particles, the larger is the surface area, which we suspect is what contributes to the growth-slowing interaction between the seeds and the nanoparticles. The small size of the nanoparticles may be changed by the nanoparticles aggregating or clumping together."

But what is still not understood, said Watts, is the nature of the interaction between the nanoparticle and the root of the seed. "What is the mechanism of the interaction between the particle and the root? That we don’t know as yet," he said.

Nanoparticles can be deposited into air by exhaust systems, chimneys or smoke stacks, said Watts. The particles can also mix with rainwater and snow and gradually work their way into soil. It is difficult to take results from a lab experiment and conclude that is what happens in the real world, said Watts. "But we speculate that air deposits of nanoparticles or water transport of them are ways in which nanoparticles could mix with plant life," he said.

Robert Florida | EurekAlert!
Further information:
http://www.njit.edu

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>