Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical cloud ‘dust’ could hold the key to climate change

27.10.2005


Scientists at the University of Manchester will set off for Australia this week to undertake an in-depth study of tropical clouds and the particles sucked up into them to gain further insight into climate change and the depletion of the ozone layer.



The research will take place in Darwin, Australia as part of a major international field experiment to study transport by tropical thunderstorms and the type of high-altitude clouds they produce.

Manchester’s research will focus on the analysis of tiny particles, known as aerosols, which determine cloud properties. Aerosols include materials like desert dust, sea salt and other organic materials which are drawn up into the clouds from the earth’s surface. These particles control the physics of the clouds and can have a dramatic effect on the climate.


The aim of the experiment is to gain a better understanding of the kind of aerosol particles and gases which are injected by the storms into the Tropical Tropopause Layer, a poorly-understood region of the atmosphere sandwiched between the main tropical weather systems and the stratosphere above.

Data will be collected by two planes carrying high-tech monitoring equipment at different altitudes through a series of storms over a four month period. The data will then be used to create computer models of the clouds and the chemicals contained within them.

Professor Geraint Vaughan, of the University’s School of Earth, Atmospheric and Environmental Sciences, who will lead the study, said: “The tropics drives global atmospheric circulation, so it is extremely important for us to understand how atmospheric processes operate there.

“Deep thunderstorms are a major feature of tropical weather, but their overall effect on the transport of material to high levels is poorly understood. This is important because it helps determine the composition of the stratosphere and the kinds of clouds which form high in the atmosphere.”

He added: “If we can understand the nature and composition of these clouds, we will be able to use this information to help predict future climate change.”

The research is being undertaken as part of the Natural Environment Research Council’s (NERC) £1 million ACTIVE project. The research team will use the Australian Egrett aircraft and the NERC’s Dornier aircraft to measure chemical and aerosol which are drawn into and expelled from tropical storms. The measurements will be interpreted using cloud-scale and large-scale modelling to distinguish the contribution of different sources to the Tropical Tropopause Layer.

ACTIVE is a NERC-funded consortium project involving the Universities of Manchester, Cambridge and, York (UK); DLR and Forschungszentrum Julich (Germany); York University (Canada), Bureau of Meteorology (Australia) and Airborne Research Australia.

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk/news

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>