Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boiler modifications cut mercury emissions 70 percent or more, research team finds

05.10.2005


Inexpensive technique verified in full-scale tests at three coal-fired power plants



Researchers at Lehigh University’s Energy Research Center (ERC) have developed and successfully tested a cost-effective technique for reducing mercury emissions from coal-fired power plants.

In full-scale tests at three power plants, says lead investigator Carlos E. Romero, the Lehigh system reduced flue-gas emissions of mercury by as much as 70 percent or more with modest impact on plant performance and fuel cost.


The reductions were achieved, says Romero, by modifying the physical conditions of power-plant boilers, including flue gas temperature, the size of the coal particles that are burned, the size and unburned carbon level of the fly ash, and the fly ash residence time. These modifications promote the in-flight capture of mercury, Romero said.

The ERC researchers reported their findings in an article titled "Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers," which will be published in a forthcoming issue of the journal Fuel.

Mercury enters the atmosphere as a gas and can remain airborne several years before it precipitates with rain and falls into bodies of water, where it is ingested by fish. Because mercury is a neurotoxin, people who consume large quantities of fish can develop brain and nervous ailments. Forty-four states have mercury advisories.

Coal-fired power plants are the largest single-known source of mercury emissions in the U.S. Estimates of total mercury emissions from coal-fired plants range from 40 to 52 tons.

The U.S. Environmental Protection Agency last March issued its first-ever regulations restricting the emission of mercury from coal-fired power plants. The order mandates reductions of 23 percent by 2010 and 69 percent by 2018. Four states - Massachusetts, New Jersey, Connecticut and Wisconsin - issued their own restrictions before the March 15 action by the EPA.

The changes in boiler operating conditions, said Romero, prevent mercury from being emitted at the stack and promote its oxidation in the flue gas and adsorption into the fly ash instead. Oxidized mercury is easily captured by scrubbers, filters and other boiler pollution-control equipment.

The ERC team used computer software to model boiler operating conditions and alterations and then collaborated with Western Kentucky University on the field tests. Analysis of stack emissions showed that the new technology achieved a 50- to 75-percent reduction of total mercury in the flue gas with minimal to modest impact on unit thermal performance and fuel cost. This was achieved at units burning bituminous coals.

Only about one-third of mercury is captured by coal-burning power plant boilers that are not equipped with special mercury-control devices, Romero said.

Romero estimated that the new ERC technology could save a 250-megawatt power unit as much as $2 million a year in mercury-control costs. The savings could be achieved, he said, by applying the ERC method solely or in combination with a more expensive technology called activated carbon injection, which would be used by coal-fired power plants to reduce mercury emissions. The resulting hybrid method, says Romero, would greatly reduce the approximately 250 pounds per hour of activated carbon that a 250-MW boiler needs to inject to curb mercury emissions.

The new ERC technology was developed by Romero, ERC director Edward Levy, ERC associate director Nenad Sarunac, ERC research scientist Harun Bilirgen, and Ying Li, who recently received an M.S. in mechanical engineering from Lehigh.

The breakthrough follows years of work by ERC researchers in optimizing boiler operations to control emissions of NOx, CO, particulates and other pollutants.

For their mercury-emission research, the ERC group received a total of $1.2 million in funding from a consortium of utility companies, the Pennsylvania Infrastructure Technology Alliance and the U.S. Department of Energy.

It is expensive to check for levels of mercury emissions, says Romero, because mercury levels are measured in parts per billion, while NOx levels are measured in parts per million.

The ERC tests were performed at a power plant in Alexandria, Virginia, and at two units of a power plant in Massachusetts. The ERC and Western Kentucky University will conduct tests next year at an additional unit firing Powder River Basin sub-bituminous coals.

Romero discussed his group’s findings at the 2004 Pittsburgh Coal Conference in Osaka, Japan, where he gave a paper titled "Impact of Boiler Operating Conditions on Mercury Emission in Coal-Fired Utility Boilers."

He has given half a dozen presentations on his group’s findings so far this year, including an address at the ICAC (Institute of Clean Air Companies) Clean Air Technologies and Strategies Conference in Baltimore in March.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>