Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea exploration beneath Katrina’s wake

02.09.2005


A scene from Viosca Knoll


Image from video of world’s first known fluorescent shark


Expedition team dodges storm and returns to gulf seafloor

Despite having to evade hurricane Katrina, a team of scientists from Harbor Branch and other institutions is returning to port this Sunday with new tales from the deep after completing their second annual Deep Scope expedition. The group has discovered a mysterious visual capability in a deep-sea crab; captured new video of a large, recently discovered squid species; and took clear video of the world’s first known fluorescent shark. The Commerce Department’s National Oceanic and Atmospheric Administration funded the mission to sites around the Gulf of Mexico.

The expedition, which began Aug. 19, is taking place aboard Harbor Branch’s Seward Johnson research vessel and the Johnson-Sea-Link I submersible, capable of diving to depths up to 3,000 feet. The mission’s overall purpose is to use a variety of new technologies to gain a better view of deep-sea life, and to understand how that life itself views the deep sea.



The team has targeted hardbottom landscapes such as a coral mound about 200 miles west of Tampa and the Viosca Knoll, about 140 miles southeast of New Orleans. Though the team was able to conduct dives at both locations early on, hurricane Katrina forced them to run for Galveston, Tex., where they took shelter for 3 days before heading back out.

The ship’s crew took special precautions as they cruised from Texas back to the Viosca Knoll to avoid hurricane debris. They encountered extensive garbage, but nothing that threatened the ship. They also saw signs of damage on oil rigs and heard reports from other ships that all rigs within a 50-mile-wide swath beneath the hurricane’s path appeared to be thrashed beyond operable condition.

Amidst calm seas, submersible dives resumed today and will continue through Saturday, Sept. 3, offering ample opportunity for additional discoveries.

"Considering that a category 5 hurricane just went through this area, I’m surprised that we can be out here and diving again so soon," says Chief Scientist Tammy Frank, a visual ecologist from Harbor Branch, "it really is astonishing how quickly the seas have laid down."

Frank has been conducting detailed studies of how the eyes of animals on the deep seafloor work, in collaboration with others aboard. Working with animals collected in special light-tight devices that avoid damage to delicate deep-sea eyes, Frank has discovered a species of deep-sea crab that can detect ultra-violet light, despite there being no known ultraviolet light in deep water. UV sensitivity is common in animals that live closer to the surface, but has never been discovered in a deep species. The reasons for this seemingly bizarre ability are not clear, but the sensitivity could point to a deep-sea light source about which researchers are not aware, or to some unknown characteristic of known light sources such as bioluminescence--the light chemically produced by countless open ocean organisms.

One key instrument used on the expedition to help humans see in the deep sea is the prototype Eye-in-the-Sea camera system, which was designed by Edith Widder, former Harbor Branch senior scientist who recently founded Ocean Recon in Ft. Pierce, Fla. This system is deployed on the seafloor using the submersible and left for 24-hour or longer intervals to film animals and activities using very low levels of infrared light virtually invisible to deep-sea animals. This allows an exceptionally sensitive intensified camera to capture natural behaviors and footage of animals that have evaded scientists that used other, more disruptive tools such as relatively loud ROVs and submersibles with their bright lights.

Last year, the system captured footage of a six-foot squid believed to be a new species. This year, at a site hundreds of miles away, the camera caught footage of what appears to be the same species, which would suggest that the squid is not rare, and would also illustrate how poorly explored the deep sea remains if such a large animal could have gone undiscovered. The squid appears to have been attracted by a flashing light lure designed to mimic a deep-sea jellyfish’s bioluminescent display. Much remains unknown about how animals use bioluminescence, and one of the key goals for Eye-in-the-Sea beyond basic observation is to use the bioluminescence lure and other techniques to learn how animals use the light they produce.

Based in large part on the success of last year’s expedition, Widder has been awarded a $500,000 National Science Foundation grant to build a more advanced Eye-in-the-Sea in collaboration with Harbor Branch engineers, a project now underway.

Prior to the hurricane, the Deep Scope team was also exploring fluorescence given off by deep-sea animals. Fluorescence occurs when an animal or object absorbs light of one color and then reemits light of, or glows, another color. In the ocean, detecting fluorescence can allow scientists to spot animals that would otherwise be too effectively camouflaged to see. Fluorescence is also important because the proteins that allow animals to fluoresce are used in genetic research and new fluorescent animals may contain proteins that offer novel benefits in such work.

Mike Matz, of the University of Florida’s Whitney Laboratory in St. Augustine, and others aboard are using powerful lights mounted on the front of the submersible to illuminate animals whose fluorescence is then captured on the sub’s video camera using a filter that blocks non-fluorescent light reflected back.

Last year, using this technique, the group discovered the world’s first fluorescent shark, a previously known species called a chain dogfish whose fluorescence had never been observed. To their dismay, though, the team was unable to capture the fluorescence clearly on film. During this year’s expedition, Matz was ecstatic when he came upon a shark kind enough to rest on the bottom in front of the sub, allowing him to record incredible video footage of the animal’s intricate fluorescent pattern, not unlike that of the fictional glowing "jaguar" shark in the film The Life Aquatic, which it may be worth noting came out months after the team made its discovery.

Daily dispatches from the expedition team and extensive background material on their work is posted at oceanexplorer.noaa.gov, with additional materials at www.at-sea.org.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu
http://www.at-sea.org
http://oceanexplorer.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>