Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the trees for the forest: WHRC scientists creating national biomass and carbon dataset

24.08.2005


Scientists at the Woods Hole Research Center are producing a high-resolution "National Biomass and Carbon Dataset" for the year 2000 (NBCD2000), the first ever inventory of its kind. Through a combination of NASA satellite datasets, topographic survey data, land use/land cover data, and extensive forest inventory data collected by the U.S. Forest Service, this "millennium" dataset will serve as an invaluable baseline for carbon stock assessment and flux modeling in the United States.



The NBCD2000 project draws on vegetation canopy height estimated from digital elevation data collected during the 2000 Shuttle Radar Topography Mission, which mapped 80 percent of the Earth’s land mass with a radar instrument, producing the most complete digital surface map of Earth. In combination with the National Land Cover Database 2001(NLCD2001) and the National Elevation Dataset (NED), both generated by the U.S. Geological Survey, and forest survey data from the U.S. Forest Service, a high-resolution database of circa-2000 vegetation canopy height, aboveground biomass, and carbon stocks for the conterminous United States will be generated, providing an unprecedented baseline against which to compare data products from the next generation of advanced Earth observing remote sensing platforms.

Dr. Josef Kellndorfer, an associate scientist with the Woods Hole Research Center, is leading the project. He says, "The generation of this first-of-its-kind, high-resolution data set for the United States for the year 2000 will enable unprecedented quantification of biomass and carbon stocks, and will improve many more related studies ranging from carbon-climate interactions, forest fire mitigation, and wildlife habitat characterization, to national energy policy with respect to bio-fuel and renewable resources."


In the NBCD2000 initiative, data will be analyzed in 60 ecologically diverse regions, termed "mapping zones", which cover the entire conterminous United States. Within each mapping zone data from the space shuttle are combined with topographic survey data from the NED to form a radar-measured vegetation height map. Subsequently, this map is converted to estimates of actual vegetation height, biomass, and carbon stock using survey data from the U.S. Forest Service and ancillary data sets from the NLCD2001 project, which uses the same mapping zones. The NLCD2001 provides crucial input to the NBCD2000 project for stratification of the calibration/conversion process by providing land use/land cover and tree cover data sets.

In this context Dr. Kellndorfer states, "This project depends on the confluence of these national datasets, and the development of a complex set of models, each of which has its own accuracy characteristic. We are keen to see new global satellite missions which would provide much improved height, biomass, and carbon estimates more directly, e.g., through a fusion of lidar and interferometric radar technology."

Dr. Kellndorfer and his colleagues at the Woods Hole Research Center are beginning the first phase of the project, expected to conclude in early 2007. The first mapping zone targeted by the study is in central Utah, where the current production of the NLCD2001 is completed and where high quality NED data are available. Furthermore, central Utah is of high interest for the fire modeling community, which will benefit from the results as well. The first stage will be an iterative period devoted largely to algorithm development, testing, and subsequent refinement. An important outcome of this phase will be an advanced understanding of the functional relationships between vegetation canopy height estimates and estimates of biomass and carbon stocks. Overall, work will be completed for several representative ecoregions totaling roughly 10 percent of the conterminous United States.

Knowledge and expertise gained during this phase will lay the groundwork for phase two, which is expected to last from 2007 into 2009 and which will extend the estimation strategy to the remainder of the conterminous United States.

To encourage use and further analysis of the proposed datasets within the scientific community, the results of this work be will be as transparent as possible. The following results and products will be delivered at the end of phase one for each of the six mapping zones:

1) An ArcGIS/FGDC compatible database with vector layers and an associated attribute table, the modeled mean estimates for height, aboveground biomass, and carbon stock, as well as spatial error and confidence measures which are based on the validation results.

2) Three 30 m-resolution raster layers corresponding to the modeled vegetation canopy height, aboveground biomass, and carbon stock, plus associated confidence layers for height and biomass.

3) A detailed metadata report containing the validation statistics together with all model statistics. The horizontal co-registration residuals and the "correction surface" used for vertical fitting of the SRTM and NED data sets will also be included.

4) A compilation of the final inversion models specific to each ecoregion (i.e., mapping zone), and vegetation structural group.

5) Various publications, presentations at the AGU and Carbon cycle science meetings.

In order to facilitate the transition to phase two of the project, a software archive and detailed documentation describing the prototype production processor developed during phase one will be delivered. Access to all final datasets and documentation will be given via a project website.

According to Dr. Kellndorfer, "The collaboration with the U.S. Forest Service is mutually beneficial. The Forest Service has a federal mandate to report on the state of U.S. forest land. To facilitate this reporting requirement, the Forest Service conducts surveys for over 75 years on some 300,000 permanent plots through the Forest Inventory and Analysis program (FIA). Information from these plots is used in the NBCD2000 project to generate models needed to derive the vegetation height, biomass, and carbon from the satellite measurements. Conversely, these spatially extensive measurements greatly enhance the Forest Service’s capabilities to plan and conduct their survey and manage forest lands."

He adds, "Overall, this project presents an opportunity to compile a more complete inventory of our national forest resource and to advance the science of accurately measuring and monitoring this resource globally with future satellite missions."

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>